52double HypoTestInverterResult::fgAsymptoticMaxSigma = 5;
53int HypoTestInverterResult::fgAsymptoticNumPoints = 11;
58HypoTestInverterResult::HypoTestInverterResult(
const char *
name ) :
62 fInterpolateLowerLimit(true),
63 fInterpolateUpperLimit(true),
64 fFittedLowerLimit(false),
65 fFittedUpperLimit(false),
66 fInterpolOption(kLinear),
69 fCLsCleanupThreshold(0.005)
83 fUseCLs(other.fUseCLs),
84 fIsTwoSided(other.fIsTwoSided),
85 fInterpolateLowerLimit(other.fInterpolateLowerLimit),
86 fInterpolateUpperLimit(other.fInterpolateUpperLimit),
87 fFittedLowerLimit(other.fFittedLowerLimit),
88 fFittedUpperLimit(other.fFittedUpperLimit),
89 fInterpolOption(other.fInterpolOption),
90 fLowerLimitError(other.fLowerLimitError),
91 fUpperLimitError(other.fUpperLimitError),
92 fCLsCleanupThreshold(other.fCLsCleanupThreshold)
99 for (
int i = 0; i < nOther; ++i)
135 for (
int i=0; i < nOther; ++i) {
158 fInterpolateLowerLimit(true),
159 fInterpolateUpperLimit(true),
160 fFittedLowerLimit(false),
161 fFittedUpperLimit(false),
162 fInterpolOption(kLinear),
163 fLowerLimitError(-1),
164 fUpperLimitError(-1),
165 fCLsCleanupThreshold(0.005)
216 bool resultIsAsymptotic(
false);
220 if ( !
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
221 resultIsAsymptotic =
true;
225 int nPointsRemoved(0);
227 double CLsobsprev(1.0);
230 const double x = *itr;
238 const std::vector<double> & values =
s->GetSamplingDistribution();
240 coutE(
Eval) <<
"HypoTestInverterResult::ExclusionCleanup - invalid size of sampling distribution" << std::endl;
247 if (resultIsAsymptotic) {
249 double dsig = 2.*maxSigma / (values.size() -1) ;
262 double * z =
const_cast<double *
>( &values[0] );
268 const double CLsobs =
CLs(i);
272 bool removeThisPoint(
false);
275 if (resultIsAsymptotic && i>=1 && CLsobs>CLsobsprev) {
276 removeThisPoint =
true;
277 }
else if (CLsobs >= 0.) {
282 removeThisPoint |= i>=1 && CLsobs >= 0.9999;
288 removeThisPoint |= CLsobs < 0.;
291 if (removeThisPoint) {
307 return nPointsRemoved;
325 if (nOther == 0)
return true;
333 coutI(
Eval) <<
"HypoTestInverterResult::Add - merging result from " << otherResult.
GetName()
334 <<
" in " <<
GetName() << std::endl;
339 if (addExpPValues || mergeExpPValues)
340 coutI(
Eval) <<
"HypoTestInverterResult::Add - merging also the expected p-values from pseudo-data" << std::endl;
347 for (
int i = 0; i < nOther; ++i)
354 for (
int i = 0; i < nOther; ++i) {
355 double otherVal = otherResult.
fXValues[i];
357 if (otherHTR == 0)
continue;
358 bool sameXFound =
false;
359 for (
int j = 0; j < nThis; ++j) {
366 thisHTR->
Append(otherHTR);
368 if (mergeExpPValues) {
373 if (thisNToys != otherNToys )
374 coutW(
Eval) <<
"HypoTestInverterResult::Add expected p values have been generated with different toys " << thisNToys <<
" , " << otherNToys << std::endl;
393 coutI(
Eval) <<
"HypoTestInverterResult::Add - new number of points is " <<
fXValues.size()
396 coutI(
Eval) <<
"HypoTestInverterResult::Add - new toys/point is "
418 if (!
r)
return false;
455 return result->CLsplusb();
470 return result->CLsError();
472 return result->CLsplusbError();
497 return result->CLsplusb();
521 return result->CLbError();
533 return result->CLsplusbError();
545 return result->CLsError();
568 const double tol = 1.E-12;
587 std::cout <<
"using graph for search " << lowSearch <<
" min " << axmin <<
" max " << axmax << std::endl;
592 const double *
y =
graph.GetY();
595 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult::GetGraphX - need at least 2 points for interpolation (n=" <<
n <<
")\n";
596 return (
n>0) ?
y[0] : 0;
613 return (lowSearch) ? varmax : varmin;
616 return (lowSearch) ? varmin : varmax;
623 if (axmin >= axmax ) {
626 std::cout <<
"No range given - check if extrapolation is needed " << std::endl;
632 double yfirst =
graph.GetY()[0];
633 double ylast =
graph.GetY()[
n-1];
639 if ( (
ymax < y0 && !lowSearch) || ( yfirst > y0 && lowSearch) ) {
643 if ( (
ymax < y0 && lowSearch) || ( ylast > y0 && !lowSearch) ) {
648 auto func = [&](
double x) {
658 <<
" , " <<
graph.Eval(
xmax) <<
" target " << y0 << std::endl;
661 bool ret = brf.
Solve(100, 1.E-16, 1.E-6);
663 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult - interpolation failed for interval [" <<
xmin <<
"," <<
xmax
665 <<
" target=" << y0 <<
" return inf" << std::endl
666 <<
"One may try to clean up invalid points using HypoTestInverterResult::ExclusionCleanup()." << std::endl;
669 double limit = brf.
Root();
672 if (lowSearch) std::cout <<
"lower limit search : ";
673 else std::cout <<
"Upper limit search : ";
674 std::cout <<
"interpolation done between " <<
xmin <<
" and " <<
xmax
675 <<
"\n Found limit using RootFinder is " << limit << std::endl;
677 TString fname =
"graph_upper.root";
678 if (lowSearch) fname =
"graph_lower.root";
681 graph.Write(
"graph");
687 if (axmin >= axmax) {
690 std::cout <<
"do new interpolation dividing from " <<
index <<
" and " <<
y[
index] << std::endl;
693 if (lowSearch &&
index >= 1 && (
y[0] - y0) * (
y[
index]- y0) < 0) {
697 else if (!lowSearch &&
index <
n-2 && (
y[
n-1] - y0) * (
y[
index+1]- y0) < 0) {
726 double val = (lowSearch) ?
xmin :
xmax;
727 coutW(
Eval) <<
"HypoTestInverterResult::FindInterpolatedLimit"
728 <<
" - not enough points to get the inverted interval - return "
737 std::vector<unsigned int>
index(
n );
741 for (
int i = 0; i <
n; ++i)
753 double * itrmax = std::max_element(
graph.GetY() ,
graph.GetY() +
n);
754 double ymax = *itrmax;
755 int iymax = itrmax -
graph.GetY();
756 double xwithymax =
graph.GetX()[iymax];
759 std::cout <<
" max of y " << iymax <<
" " << xwithymax <<
" " <<
ymax <<
" target is " <<
target << std::endl;
791 if (iymax <= (
n-1)/2 ) {
802 std::cout <<
" found xmin, xmax = " <<
xmin <<
" " <<
xmax <<
" for search " << lowSearch << std::endl;
813 if (upI < 1)
return xmin;
819 if (lowI >=
n-1)
return xmax;
827 std::cout <<
"finding " << lowSearch <<
" limit between " <<
xmin <<
" " <<
xmax << endl;
837 TString limitType = (lowSearch) ?
"lower" :
"upper";
838 ooccoutD(
this,
Eval) <<
"HypoTestInverterResult::FindInterpolateLimit "
839 <<
"the computed " << limitType <<
" limit is " << limit <<
" +/- " << error << std::endl;
842 std::cout <<
"Found limit is " << limit <<
" +/- " << error << std::endl;
890 int closestIndex = -1;
892 double smallestError = 2;
893 double bestValue = 2;
902 if (
dist < bestValue) {
907 if (bestIndex >=0)
return bestIndex;
915 std::vector<unsigned int> indx(
n);
917 std::vector<double> xsorted(
n);
918 for (
int i = 0; i <
n; ++i) xsorted[i] =
fXValues[indx[i] ];
922 std::cout <<
"finding closest point to " << xtarget <<
" is " << index1 <<
" " << indx[index1] << std::endl;
926 if (index1 < 0)
return indx[0];
927 if (index1 >=
n-1)
return indx[
n-1];
928 int index2 = index1 +1;
979 coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimateError"
980 <<
"Empty result \n";
985 coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimateError"
986 <<
" only points - return its error\n";
996 std::cout <<
"calculate estimate error " <<
type <<
" between " <<
xmin <<
" and " <<
xmax << std::endl;
1001 std::vector<unsigned int> indx(
fXValues.size());
1017 if (
graph.GetN() < 2) {
1018 if (
np >= 2)
coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimatedError - no valid points - cannot estimate the " <<
type <<
" limit error " << std::endl;
1029 TF1 fct(
"fct",
"exp([0] * (x - [2] ) + [1] * (x-[2])**2)", minX, maxX);
1030 double scale = maxX-minX;
1049 std::cout <<
"fitting for limit " <<
type <<
"between " << minX <<
" , " << maxX <<
" points considered " <<
graph.GetN() << std::endl;
1050 int fitstat =
graph.Fit(&fct,
" EX0");
1051 graph.SetMarkerStyle(20);
1057 int fitstat =
graph.Fit(&fct,
"Q EX0");
1061 double theError = 0;
1070 coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimatedError - cannot estimate the " <<
type <<
" limit error " << std::endl;
1112 if (!firstResult)
return 0;
1122 return !
result->GetBackGroundIsAlt() ?
result->GetAltDistribution() :
result->GetNullDistribution();
1130 if (index < 0 || index >=
ArraySize() )
return 0;
1136 static bool useFirstB =
false;
1138 int bIndex = (useFirstB) ? 0 :
index;
1145 if (bDistribution && sbDistribution) {
1155 std::vector<double> values(bDistribution->
GetSize());
1156 for (
int i = 0; i < bDistribution->
GetSize(); ++i) {
1168 const double dsig = 2* smax/ (npoints-1) ;
1169 std::vector<double> values(npoints);
1170 for (
int i = 0; i < npoints; ++i) {
1171 double nsig = -smax + dsig*i;
1173 if (pval < 0) {
return 0;}
1176 return new SamplingDistribution(
"Asymptotic expected values",
"Asymptotic expected values",values);
1186 coutE(
Eval) <<
"HypoTestInverterResult::GetLimitDistribution"
1187 <<
" not enough points - return 0 " << std::endl;
1191 ooccoutD(
this,
Eval) <<
"HypoTestInverterResult - computing limit distribution...." << std::endl;
1196 std::vector<SamplingDistribution*> distVec( npoints );
1198 for (
unsigned int i = 0; i < distVec.size(); ++i) {
1203 distVec[i]->InverseCDF(0);
1204 sum += distVec[i]->GetSize();
1207 int size =
int( sum/ npoints);
1210 ooccoutW(
this,
InputArguments) <<
"HypoTestInverterResult - set a minimum size of 10 for limit distribution" << std::endl;
1218 std::vector< std::vector<double> > quantVec(npoints );
1219 for (
int i = 0; i < npoints; ++i) {
1221 if (!distVec[i])
continue;
1224 std::vector<double> pvalues = distVec[i]->GetSamplingDistribution();
1225 delete distVec[i]; distVec[i] = 0;
1226 std::sort(pvalues.begin(), pvalues.end());
1231 quantVec[i] = std::vector<double>(
size);
1232 for (
int ibin = 0; ibin <
size; ++ibin) {
1234 p[0] = std::min( (ibin+1) * 1./
double(
size), 1.0);
1237 (quantVec[i])[ibin] =
q[0];
1243 std::vector<unsigned int>
index( npoints );
1250 std::vector<double> limits(
size);
1252 for (
int j = 0; j <
size; ++j ) {
1255 for (
int k = 0; k < npoints ; ++k) {
1318 if (nEntries <= 0)
return (lower) ? 1 : 0;
1322 if (!
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
1326 if (!limitDist)
return 0;
1328 if (values.size() <= 1)
return 0;
1345 if (
option.Contains(
"P")) {
1350 std::vector<unsigned int>
index(nEntries);
1353 for (
int j=0; j<nEntries; ++j) {
1357 ooccoutI(
this,
Eval) <<
"HypoTestInverterResult - cannot compute expected p value distribution for point, x = "
1358 <<
GetXValue(i) <<
" skip it " << std::endl;
1361 const std::vector<double> & values =
s->GetSamplingDistribution();
1362 double *
x =
const_cast<double *
>(&values[0]);
1368 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult - cannot compute limits , not enough points, n = " <<
g.GetN() << std::endl;
1379 if (!limitDist)
return 0;
1381 double *
x =
const_cast<double *
>(&values[0]);
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char mode
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t g
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Class for finding the root of a one dimensional function using the Brent algorithm.
bool SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup) override
Sets the function for the rest of the algorithms.
bool Solve(int maxIter=100, double absTol=1E-8, double relTol=1E-10) override
Returns the X value corresponding to the function value fy for (xmin<x<xmax).
double Root() const override
Returns root value.
void SetNpx(int npx)
Set the number of point used to bracket root using a grid.
Functor1D class for one-dimensional functions.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
RooAbsArg * first() const
virtual bool addOwned(RooAbsArg &var, bool silent=false)
Add an argument and transfer the ownership to the collection.
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooRealVar represents a variable that can be changed from the outside.
TObject * clone(const char *newname) const override
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
bool fInterpolateUpperLimit
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
double LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0.0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
double UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
double fCLsCleanupThreshold
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
InterpolOption_t fInterpolOption
interpolation option (linear or spline)
int ArraySize() const
number of entries in the results array
bool fInterpolateLowerLimit
std::vector< double > fXValues
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
double CLsError(int index) const
return the observed CLb value for the i-th entry
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
double CLbError(int index) const
return the observed CLb value for the i-th entry
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
HypoTestInverterResult(const char *name=nullptr)
default constructor
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
double UpperLimit() override
return the interval upper limit
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
TList fExpPValues
list of expected sampling distribution for each point
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
bool fIsTwoSided
two sided scan (look for lower/upper limit)
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0.0)
Return an error estimate on the upper(lower) limit.
static int fgAsymptoticNumPoints
number of points used to build expected p-values
static double fgAsymptoticMaxSigma
max sigma value used to scan asymptotic expected p values
int ExclusionCleanup()
remove points that appear to have failed.
double LowerLimit() override
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
double CLs(int index) const
return the observed CLb value for the i-th entry
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
double CLb(int index) const
return the observed CLb value for the i-th entry
TList fYObjects
list of HypoTestResult for each point
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
~HypoTestInverterResult() override
destructor
HypoTestResult is a base class for results from hypothesis tests.
virtual double CLsplusb() const
Convert AlternatePValue into a "confidence level".
virtual void Append(const HypoTestResult *other)
add values from another HypoTestResult
void SetBackgroundAsAlt(bool l=true)
void SetNullDistribution(SamplingDistribution *null)
bool GetBackGroundIsAlt(void) const
void SetTestStatisticData(const double tsd)
void SetAltDistribution(SamplingDistribution *alt)
void SetPValueIsRightTail(bool pr)
SamplingDistribution * GetNullDistribution(void) const
virtual double CLs() const
is simply (not a method, but a quantity)
SamplingDistribution * GetAltDistribution(void) const
This class simply holds a sampling distribution of some test statistic.
Int_t GetSize() const
size of samples
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
SimpleInterval is a concrete implementation of the ConfInterval interface.
double fUpperLimit
upper interval limit
RooArgSet fParameters
set containing the parameter of interest
double ConfidenceLevel() const override
return the confidence interval
double fLowerLimit
lower interval limit
double fConfidenceLevel
confidence level
SimpleInterval & operator=(const SimpleInterval &other)
default constructor
virtual void RemoveAll(TCollection *col)
Remove all objects in collection col from this collection.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
virtual Double_t Derivative(Double_t x, Double_t *params=nullptr, Double_t epsilon=0.001) const
Returns the first derivative of the function at point x, computed by Richardson's extrapolation metho...
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
virtual void SetParameters(const Double_t *params)
virtual void FixParameter(Int_t ipar, Double_t value)
Fix the value of a parameter for a fit operation The specified value will be used in the fit and the ...
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
A TGraphErrors is a TGraph with error bars.
A TGraph is an object made of two arrays X and Y with npoints each.
void Add(TObject *obj) override
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
TObject * Clone(const char *newname="") const override
Make a clone of an object using the Streamer facility.
const char * GetName() const override
Returns name of object.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
virtual TObject * RemoveAt(Int_t idx)
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
RVec< PromoteType< T > > abs(const RVec< T > &v)
double dist(Rotation3D const &r1, Rotation3D const &r2)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
static constexpr double s
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
void SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down=kTRUE)
Sort the n1 elements of the Short_t array defined by its iterators.
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
T MaxElement(Long64_t n, const T *a)
Returns maximum of array a of length n.
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.