Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TBinomialEfficiencyFitter.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Frank Filthaut, Rene Brun 30/05/2007
3
4/*************************************************************************
5 * Copyright (C) 1995-2007, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/** \class TBinomialEfficiencyFitter
13 \ingroup Hist
14 \brief Binomial fitter for the division of two histograms.
15
16Use when you need to calculate a selection's efficiency from two histograms,
17one containing all entries, and one containing the subset of these entries
18that pass the selection, and when you have a parametrization available for
19the efficiency as a function of the variable(s) under consideration.
20
21A very common problem when estimating efficiencies is that of error estimation:
22when no other information is available than the total number of events N and
23the selected number n, the best estimate for the selection efficiency p is n/N.
24Standard binomial statistics dictates that the uncertainty (this presupposes
25sufficiently high statistics that an approximation by a normal distribution is
26reasonable) on p, given N, is
27\f[
28 \sqrt{\frac{p(1-p)}{N}}
29\f]
30However, when p is estimated as n/N, fluctuations from the true p to its
31estimate become important, especially for low numbers of events, and giving
32rise to biased results.
33
34When fitting a parametrized efficiency, these problems can largely be overcome,
35as a hypothesized true efficiency is available by construction. Even so, simply
36using the corresponding uncertainty still presupposes that Gaussian errors
37yields a reasonable approximation. When using, instead of binned efficiency
38histograms, the original numerator and denominator histograms, a binned maximum
39likelihood can be constructed as the product of bin-by-bin binomial probabilities
40to select n out of N events. Assuming that a correct parametrization of the
41efficiency is provided, this construction in general yields less biased results
42(and is much less sensitive to binning details).
43
44A generic use of this method is given below (note that the method works for 2D
45and 3D histograms as well):
46
47~~~ {.cpp}
48 {
49 TH1* denominator; // denominator histogram
50 TH1* numerator; // corresponding numerator histogram
51 TF1* eff; // efficiency parametrization
52 .... // set step sizes and initial parameter
53 .... // values for the fit function
54 .... // possibly also set ranges, see TF1::SetRange()
55 TBinomialEfficiencyFitter* f = new TBinomialEfficiencyFitter(
56 numerator, denominator);
57 Int_t status = f->Fit(eff, "I");
58 if (status == 0) {
59 // if the fit was successful, display bin-by-bin efficiencies
60 // as well as the result of the fit
61 numerator->Sumw2();
62 TH1* hEff = dynamic_cast<TH1*>(numerator->Clone("heff"));
63 hEff->Divide(hEff, denominator, 1.0, 1.0, "B");
64 hEff->Draw("E");
65 eff->Draw("same");
66 }
67 }
68~~~
69
70Note that this method cannot be expected to yield reliable results when using
71weighted histograms (because the likelihood computation will be incorrect).
72
73*/
74
76
77#include "TMath.h"
78#include "TPluginManager.h"
79#include "TROOT.h"
80#include "TH1.h"
81#include "TF1.h"
82#include "TF2.h"
83#include "TF3.h"
84#include "Fit/FitConfig.h"
85#include "Fit/Fitter.h"
86#include "TFitResult.h"
87#include "Math/Functor.h"
89
90#include <limits>
91
92
94
96
97
98////////////////////////////////////////////////////////////////////////////////
99/// default constructor
100
102 fNumerator = nullptr;
103 fDenominator = nullptr;
104 fFunction = nullptr;
107 fRange = kFALSE;
109 fFitter = nullptr;
110}
111
112////////////////////////////////////////////////////////////////////////////////
113/// Constructor.
114///
115/// Note that no objects are copied, so it is up to the user to ensure that the
116/// histogram pointers remain valid.
117///
118/// Both histograms need to be "consistent". This is not checked here, but in
119/// TBinomialEfficiencyFitter::Fit().
120
121TBinomialEfficiencyFitter::TBinomialEfficiencyFitter(const TH1 *numerator, const TH1 *denominator) {
123 fFunction = nullptr;
124 fFitter = nullptr;
125 Set(numerator,denominator);
126}
127
128////////////////////////////////////////////////////////////////////////////////
129/// destructor
130
132 if (fFitter) delete fFitter;
133 fFitter = nullptr;
134}
135
136////////////////////////////////////////////////////////////////////////////////
137/// Initialize with a new set of inputs.
138
139void TBinomialEfficiencyFitter::Set(const TH1 *numerator, const TH1 *denominator)
140{
141 fNumerator = (TH1*)numerator;
142 fDenominator = (TH1*)denominator;
143
146 fRange = kFALSE;
147}
148
149////////////////////////////////////////////////////////////////////////////////
150/// Set the required integration precision, see TF1::Integral()
151
153{
154 fEpsilon = epsilon;
155}
156
157////////////////////////////////////////////////////////////////////////////////
158/// Provide access to the underlying fitter object.
159/// This may be useful e.g. for the retrieval of additional information (such
160/// as the output covariance matrix of the fit).
161
163{
164 if (!fFitter) fFitter = new ROOT::Fit::Fitter();
165 return fFitter;
166
167}
168
169////////////////////////////////////////////////////////////////////////////////
170/// Carry out the fit of the given function to the given histograms.
171///
172/// If option "I" is used, the fit function will be averaged over the
173/// bin (the default is to evaluate it simply at the bin center).
174///
175/// If option "R" is used, the fit range will be taken from the fit
176/// function (the default is to use the entire histogram).
177///
178/// If option "S" a TFitResult object is returned and it can be used to obtain
179/// additional fit information, like covariance or correlation matrix.
180///
181/// Note that all parameter values, limits, and step sizes are copied
182/// from the input fit function f1 (so they should be set before calling
183/// this method. This is particularly relevant for the step sizes, taken
184/// to be the "error" set on input, as a null step size usually fixes the
185/// corresponding parameter. That is protected against, but in such cases
186/// an arbitrary starting step size will be used, and the reliability of
187/// the fit should be questioned). If parameters are to be fixed, this
188/// should be done by specifying non-null parameter limits, with lower
189/// limits larger than upper limits.
190///
191/// On output, f1 contains the fitted parameters and errors, as well as
192/// the number of degrees of freedom, and the goodness-of-fit estimator
193/// as given by S. Baker and R. Cousins, Nucl. Instr. Meth. A221 (1984) 437.
194
196{
197 TString opt = option;
198 opt.ToUpper();
199 fAverage = opt.Contains("I");
200 fRange = opt.Contains("R");
201 Bool_t verbose = opt.Contains("V");
202 Bool_t quiet = opt.Contains("Q");
203 Bool_t saveResult = opt.Contains("S");
204 if (!f1) return -1;
205 fFunction = (TF1*)f1;
206 Int_t i, npar;
207 npar = f1->GetNpar();
208 if (npar <= 0) {
209 Error("Fit", "function %s has illegal number of parameters = %d",
210 f1->GetName(), npar);
211 return -3;
212 }
213
214 // Check that function has same dimension as histogram
215 if (!fNumerator || !fDenominator) {
216 Error("Fit","No numerator or denominator histograms set");
217 return -5;
218 }
219 if (f1->GetNdim() != fNumerator->GetDimension()) {
220 Error("Fit","function %s dimension, %d, does not match histogram dimension, %d",
222 return -4;
223 }
224 // Check that the numbers of bins for the histograms match
226 (f1->GetNdim() > 1 && fNumerator->GetNbinsY() != fDenominator->GetNbinsY()) ||
227 (f1->GetNdim() > 2 && fNumerator->GetNbinsZ() != fDenominator->GetNbinsZ())) {
228 Error("Fit", "numerator and denominator histograms do not have identical numbers of bins");
229 return -6;
230 }
231
232 // initialize the fitter
233
234 if (!fFitter) {
236 }
237
238
239 std::vector<ROOT::Fit::ParameterSettings> & parameters = fFitter->Config().ParamsSettings();
240 parameters.reserve(npar);
241 for (i = 0; i < npar; i++) {
242
243 // assign an ARBITRARY starting error to ensure the parameter won't be fixed!
244 Double_t we = f1->GetParError(i);
245 if (we <= 0) we = 0.3*TMath::Abs(f1->GetParameter(i));
246 if (we == 0) we = 0.01;
247
248 parameters.push_back(ROOT::Fit::ParameterSettings(f1->GetParName(i), f1->GetParameter(i), we) );
249
250 Double_t plow, pup;
251 f1->GetParLimits(i,plow,pup);
252 // when a parameter is fixed is having plow and pup equal to the value (if this is not zero)
253 // we handle special case when fixed parameter has zero value (in that case plow=1 and pup =1 )
254 if (plow >= pup && (plow==f1->GetParameter(i) || pup==f1->GetParameter(i) ||
255 ( f1->GetParameter(i) == 0 && plow==1. && pup == 1.) ) ) {
256 parameters.back().Fix();
257 Info("Fit", "Fixing parameter %s to value %f", f1->GetParName(i), f1->GetParameter(i));
258 } else if (plow < pup) {
259 parameters.back().SetLimits(plow,pup);
260 Info("Fit", "Setting limits for parameter %s to [%f,%f]", f1->GetParName(i), plow,pup);
261 }
262 }
263
264 // fcn must be set after setting the parameters
266
267 // set also model function in fitter to have it in FitResult
268 // in this way one can compute for example the confidence intervals
270
271 // in case default value of 1.0 is used
272 if (fFitter->Config().MinimizerOptions().ErrorDef() == 1.0 ) {
274 }
275
276 if (verbose) {
278 }
279 else if (quiet) {
281 }
282
283 // perform the actual fit
284
285 // set the fit to be a binned likelihood fit
286 // so use as chi2 for goodness of fit Baker&Cousins LR
288 Bool_t status = fFitter->FitFCN();
289 if ( !status && !quiet)
290 Warning("Fit","Abnormal termination of minimization.");
291
292 fFitDone = kTRUE;
293
294 // set the number of fitted points
295 // number of fit points is set in ComputeFCN in the TF1 object
297
298 //Store fit results in fitFunction
299 const ROOT::Fit::FitResult & fitResult = fFitter->Result();
300 if (!fitResult.IsEmpty() ) {
301 f1->SetNDF(fitResult.Ndf() );
302 f1->SetChisquare(fitResult.Chi2());
303
304 f1->SetParameters( &(fitResult.Parameters().front()) );
305 if ( int( fitResult.Errors().size()) >= f1->GetNpar() )
306 f1->SetParErrors( &(fitResult.Errors().front()) );
307
308 if (!quiet) {
309 Info("Fit","Successful Result from Binomial Efficiency fitter of function %s",f1->GetName());
310 fitResult.Print(std::cout);
311 }
312 }
313 // create a new result class if needed
314 if (saveResult) {
315 TFitResult* fr = new TFitResult(fitResult);
316 TString name = TString::Format("TBinomialEfficiencyFitter_result_of_%s",f1->GetName() );
317 fr->SetName(name); fr->SetTitle(name);
318 return TFitResultPtr(fr);
319 }
320 else {
321 return TFitResultPtr(fitResult.Status() );
322 }
323
324}
325
326////////////////////////////////////////////////////////////////////////////////
327/// Compute the likelihood.
328
330{
331 int nDim = fDenominator->GetDimension();
332
333 int xlowbin = fDenominator->GetXaxis()->GetFirst();
334 int xhighbin = fDenominator->GetXaxis()->GetLast();
335 int ylowbin = 0, yhighbin = 0, zlowbin = 0, zhighbin = 0;
336 if (nDim > 1) {
337 ylowbin = fDenominator->GetYaxis()->GetFirst();
338 yhighbin = fDenominator->GetYaxis()->GetLast();
339 if (nDim > 2) {
340 zlowbin = fDenominator->GetZaxis()->GetFirst();
341 zhighbin = fDenominator->GetZaxis()->GetLast();
342 }
343 }
344
346
347 if (fRange) {
348 double xmin, xmax, ymin, ymax, zmin, zmax;
349
350 // This way to ensure that a minimum range chosen exactly at a
351 // bin boundary is far from elegant, but is hopefully adequate.
352
353 if (nDim == 1) {
355 xlowbin = fDenominator->GetXaxis()->FindBin(xmin);
356 xhighbin = fDenominator->GetXaxis()->FindBin(xmax);
357 } else if (nDim == 2) {
359 xlowbin = fDenominator->GetXaxis()->FindBin(xmin);
360 xhighbin = fDenominator->GetXaxis()->FindBin(xmax);
361 ylowbin = fDenominator->GetYaxis()->FindBin(ymin);
362 yhighbin = fDenominator->GetYaxis()->FindBin(ymax);
363 } else if (nDim == 3) {
364 fFunction->GetRange(xmin, ymin, zmin, xmax, ymax, zmax);
365 xlowbin = fDenominator->GetXaxis()->FindBin(xmin);
366 xhighbin = fDenominator->GetXaxis()->FindBin(xmax);
367 ylowbin = fDenominator->GetYaxis()->FindBin(ymin);
368 yhighbin = fDenominator->GetYaxis()->FindBin(ymax);
369 zlowbin = fDenominator->GetZaxis()->FindBin(zmin);
370 zhighbin = fDenominator->GetZaxis()->FindBin(zmax);
371 }
372 }
373
374 // The coding below is perhaps somewhat awkward -- but it is done
375 // so that 1D, 2D, and 3D cases can be covered in the same loops.
376
377 f = 0.;
378
379 Int_t npoints = 0;
380 Double_t nmax = 0;
381 for (int xbin = xlowbin; xbin <= xhighbin; ++xbin) {
382
383 // compute the bin edges
386
387 for (int ybin = ylowbin; ybin <= yhighbin; ++ybin) {
388
389 // compute the bin edges (if applicable)
390 Double_t ylow = (nDim > 1) ? fDenominator->GetYaxis()->GetBinLowEdge(ybin) : 0;
391 Double_t yup = (nDim > 1) ? fDenominator->GetYaxis()->GetBinLowEdge(ybin+1) : 0;
392
393 for (int zbin = zlowbin; zbin <= zhighbin; ++zbin) {
394
395 // compute the bin edges (if applicable)
396 Double_t zlow = (nDim > 2) ? fDenominator->GetZaxis()->GetBinLowEdge(zbin) : 0;
397 Double_t zup = (nDim > 2) ? fDenominator->GetZaxis()->GetBinLowEdge(zbin+1) : 0;
398
399 int bin = fDenominator->GetBin(xbin, ybin, zbin);
401 Double_t nNum = fNumerator->GetBinContent(bin);
402
403 // count maximum value to use in the likelihood for inf
404 // i.e. a number much larger than the other terms
405 if (nDen> nmax) nmax = nDen;
406 if (nDen <= 0.) continue;
407 npoints++;
408
409 // mu is the average of the function over the bin OR
410 // the function evaluated at the bin centre
411 // As yet, there is nothing to prevent mu from being
412 // outside the range <0,1> !!
413
414 Double_t mu = 0;
415 switch (nDim) {
416 case 1:
417 mu = (fAverage) ?
418 fFunction->Integral(xlow, xup, fEpsilon)
419 / (xup-xlow) :
421 break;
422 case 2:
423 {
424 mu = (fAverage) ?
425 ((TF2*)fFunction)->Integral(xlow, xup, ylow, yup, fEpsilon)
426 / ((xup-xlow)*(yup-ylow)) :
429 }
430 break;
431 case 3:
432 {
433 mu = (fAverage) ?
434 ((TF3*)fFunction)->Integral(xlow, xup, ylow, yup, zlow, zup, fEpsilon)
435 / ((xup-xlow)*(yup-ylow)*(zup-zlow)) :
439 }
440 }
441
442 // binomial formula (forgetting about the factorials)
443 if (nNum != 0.) {
444 if (mu > 0.)
445 f -= nNum * TMath::Log(mu*nDen/nNum);
446 else
447 f -= nmax * -1E30; // crossing our fingers
448 }
449 if (nDen - nNum != 0.) {
450 if (1. - mu > 0.)
451 f -= (nDen - nNum) * TMath::Log((1. - mu)*nDen/(nDen-nNum));
452 else
453 f -= nmax * -1E30; // crossing our fingers
454 }
455 }
456 }
457 }
458
460}
#define f(i)
Definition RSha256.hxx:104
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
double Double_t
Definition RtypesCore.h:59
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:382
const Double_t kDefaultEpsilon
Option_t Option_t option
char name[80]
Definition TGX11.cxx:110
float xmin
float ymin
float xmax
float ymax
const std::vector< ROOT::Fit::ParameterSettings > & ParamsSettings() const
get the vector of parameter settings (const method)
Definition FitConfig.h:86
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
Definition FitConfig.h:167
class containing the result of the fit and all the related information (fitted parameter values,...
Definition FitResult.h:47
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
Definition FitResult.h:108
const std::vector< double > & Errors() const
parameter errors (return st::vector)
Definition FitResult.h:162
const std::vector< double > & Parameters() const
parameter values (return std::vector)
Definition FitResult.h:167
unsigned int Ndf() const
Number of degree of freedom.
Definition FitResult.h:156
double Chi2() const
Return the Chi2 value after fitting In case of unbinned fits (or not defined one, see the documentati...
Definition FitResult.h:153
void Print(std::ostream &os, bool covmat=false) const
print the result and optionally covariance matrix and correlations
int Status() const
minimizer status code
Definition FitResult.h:128
Fitter class, entry point for performing all type of fits.
Definition Fitter.h:77
void SetNumberOfFitPoints(unsigned int npoints)
Set number of fit points when using an external FCN function This function can be called after Fit to...
Definition Fitter.h:472
void SetFitType(int type)
Set the type of fit when using an external FCN possible types are : 1 (least-square),...
Definition Fitter.h:481
const FitResult & Result() const
get fit result
Definition Fitter.h:394
bool FitFCN(unsigned int npar, Function &fcn, const double *params=nullptr, unsigned int dataSize=0, int fitType=0)
Fit using the a generic FCN function as a C++ callable object implementing double () (const double *)...
Definition Fitter.h:649
const FitConfig & Config() const
access to the fit configuration (const method)
Definition Fitter.h:422
bool SetFCN(unsigned int npar, Function &fcn, const double *params=nullptr, unsigned int dataSize=0, int fitType=0)
Set a generic FCN function as a C++ callable object implementing double () (const double *) Note that...
Definition Fitter.h:656
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
Documentation for class Functor class.
Definition Functor.h:47
Documentation for the abstract class IBaseFunctionMultiDim.
Definition IFunction.h:61
double ErrorDef() const
error definition
void SetErrorDef(double err)
set error def
void SetPrintLevel(int level)
set print level
Class to Wrap a ROOT Function class (like TF1) in a IParamMultiFunction interface of multi-dimensions...
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:478
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:293
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition TAxis.cxx:518
Int_t GetLast() const
Return last bin on the axis i.e.
Definition TAxis.cxx:469
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition TAxis.cxx:458
Binomial fitter for the division of two histograms.
Double_t fEpsilon
Precision required for function integration (option "I")
void Set(const TH1 *numerator, const TH1 *denominator)
Initialize with a new set of inputs.
ROOT::Fit::Fitter * fFitter
pointer to the real fitter
TH1 * fDenominator
Denominator histogram.
Bool_t fRange
True if the fit range must be taken from the function range.
Bool_t fAverage
True if the fit function must be averaged over the bin.
~TBinomialEfficiencyFitter() override
destructor
TBinomialEfficiencyFitter()
default constructor
ROOT::Fit::Fitter * GetFitter()
Provide access to the underlying fitter object.
Double_t EvaluateFCN(const Double_t *par)
void SetPrecision(Double_t epsilon)
Set the required integration precision, see TF1::Integral()
Bool_t fFitDone
Set to kTRUE when the fit has been done.
void ComputeFCN(Double_t &f, const Double_t *par)
Compute the likelihood.
TFitResultPtr Fit(TF1 *f1, Option_t *option="")
Carry out the fit of the given function to the given histograms.
TH1 * fNumerator
Numerator histogram.
1-Dim function class
Definition TF1.h:233
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
Definition TF1.cxx:1940
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
Definition TF1.cxx:3419
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
Definition TF1.cxx:1930
virtual void SetChisquare(Double_t chi2)
Definition TF1.h:640
virtual Int_t GetNpar() const
Definition TF1.h:509
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
Definition TF1.cxx:3490
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition TF1.cxx:2531
virtual Int_t GetNumberFitPoints() const
Definition TF1.h:531
virtual void SetNumberFitPoints(Int_t npfits)
Definition TF1.h:652
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition TF1.cxx:2281
virtual const char * GetParName(Int_t ipar) const
Definition TF1.h:557
virtual void SetParameters(const Double_t *params)
Definition TF1.h:677
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1439
virtual Int_t GetNdim() const
Definition TF1.h:513
virtual Double_t GetParameter(Int_t ipar) const
Definition TF1.h:540
A 2-Dim function with parameters.
Definition TF2.h:29
A 3-Dim function with parameters.
Definition TF3.h:28
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Definition TFitResult.h:34
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:9174
TAxis * GetZaxis()
Definition TH1.h:327
virtual Int_t GetNbinsY() const
Definition TH1.h:299
virtual Int_t GetNbinsZ() const
Definition TH1.h:300
virtual Int_t GetDimension() const
Definition TH1.h:284
TAxis * GetXaxis()
Definition TH1.h:325
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition TH1.cxx:4990
virtual Int_t GetNbinsX() const
Definition TH1.h:298
TAxis * GetYaxis()
Definition TH1.h:326
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5090
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:140
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:991
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1005
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition TObject.cxx:979
Basic string class.
Definition TString.h:139
void ToUpper()
Change string to upper case.
Definition TString.cxx:1195
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2378
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:632
TF1 * f1
Definition legend1.C:11
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:760
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123