Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.491 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00668 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 132.355
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.879056 0.824368 0.103329 0.0103822 12910.6 0
: 2 | 0.681226 0.862559 0.104882 0.00969136 12606.3 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.601949 0.757716 0.103304 0.0102385 12894.1 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.518898 0.705645 0.107123 0.0101257 12371.5 0
: 5 | 0.461502 0.73534 0.112848 0.0130564 12025 1
: 6 | 0.409079 0.75389 0.110401 0.00982081 11930.8 2
: 7 Minimum Test error found - save the configuration
: 7 | 0.359519 0.701718 0.10502 0.0100243 12632.2 0
: 8 | 0.325869 0.788253 0.102527 0.00961446 12915.4 1
: 9 | 0.271368 0.737888 0.103556 0.0116566 13057.8 2
: 10 Minimum Test error found - save the configuration
: 10 | 0.233289 0.669026 0.106988 0.0113208 12543.5 0
:
: Elapsed time for training with 1600 events: 1.08 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0514 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 94.3724
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.21039 1.18458 0.724727 0.065194 1819.47 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.843996 0.707363 0.743921 0.0648606 1767.15 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.698512 0.672102 0.726503 0.0638082 1810.79 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.689743 0.661419 0.733906 0.0690665 1804.95 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.663142 0.646491 0.762879 0.0663675 1722.87 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.651147 0.644774 0.76384 0.0701366 1729.85 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.648881 0.621692 0.769406 0.0654836 1704.73 0
: 8 | 0.621541 0.665019 0.738885 0.0626138 1774.44 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.606159 0.591313 0.735553 0.0639472 1786.76 0
: 10 | 0.634572 0.697559 0.745138 0.0627484 1758.53 1
:
: Elapsed time for training with 1600 events: 7.52 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.335 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.126e-02
: 2 : vars : 1.052e-02
: 3 : vars : 1.039e-02
: 4 : vars : 1.026e-02
: 5 : vars : 9.912e-03
: 6 : vars : 9.862e-03
: 7 : vars : 9.604e-03
: 8 : vars : 9.579e-03
: 9 : vars : 9.323e-03
: 10 : vars : 9.126e-03
: 11 : vars : 9.090e-03
: 12 : vars : 9.047e-03
: 13 : vars : 8.944e-03
: 14 : vars : 8.824e-03
: 15 : vars : 8.556e-03
: 16 : vars : 8.555e-03
: 17 : vars : 8.554e-03
: 18 : vars : 8.492e-03
: 19 : vars : 8.337e-03
: 20 : vars : 8.301e-03
: 21 : vars : 7.892e-03
: 22 : vars : 7.851e-03
: 23 : vars : 7.807e-03
: 24 : vars : 7.794e-03
: 25 : vars : 7.787e-03
: 26 : vars : 7.758e-03
: 27 : vars : 7.755e-03
: 28 : vars : 7.691e-03
: 29 : vars : 7.625e-03
: 30 : vars : 7.479e-03
: 31 : vars : 7.393e-03
: 32 : vars : 7.333e-03
: 33 : vars : 7.332e-03
: 34 : vars : 7.293e-03
: 35 : vars : 7.292e-03
: 36 : vars : 7.040e-03
: 37 : vars : 7.034e-03
: 38 : vars : 7.001e-03
: 39 : vars : 6.959e-03
: 40 : vars : 6.934e-03
: 41 : vars : 6.880e-03
: 42 : vars : 6.791e-03
: 43 : vars : 6.762e-03
: 44 : vars : 6.759e-03
: 45 : vars : 6.706e-03
: 46 : vars : 6.561e-03
: 47 : vars : 6.560e-03
: 48 : vars : 6.488e-03
: 49 : vars : 6.423e-03
: 50 : vars : 6.405e-03
: 51 : vars : 6.361e-03
: 52 : vars : 6.351e-03
: 53 : vars : 6.350e-03
: 54 : vars : 6.333e-03
: 55 : vars : 6.284e-03
: 56 : vars : 6.186e-03
: 57 : vars : 6.128e-03
: 58 : vars : 6.127e-03
: 59 : vars : 6.121e-03
: 60 : vars : 6.074e-03
: 61 : vars : 6.064e-03
: 62 : vars : 6.048e-03
: 63 : vars : 5.977e-03
: 64 : vars : 5.975e-03
: 65 : vars : 5.943e-03
: 66 : vars : 5.879e-03
: 67 : vars : 5.735e-03
: 68 : vars : 5.708e-03
: 69 : vars : 5.699e-03
: 70 : vars : 5.683e-03
: 71 : vars : 5.668e-03
: 72 : vars : 5.627e-03
: 73 : vars : 5.593e-03
: 74 : vars : 5.472e-03
: 75 : vars : 5.457e-03
: 76 : vars : 5.429e-03
: 77 : vars : 5.395e-03
: 78 : vars : 5.273e-03
: 79 : vars : 5.174e-03
: 80 : vars : 5.174e-03
: 81 : vars : 5.111e-03
: 82 : vars : 5.061e-03
: 83 : vars : 4.988e-03
: 84 : vars : 4.959e-03
: 85 : vars : 4.937e-03
: 86 : vars : 4.890e-03
: 87 : vars : 4.876e-03
: 88 : vars : 4.870e-03
: 89 : vars : 4.824e-03
: 90 : vars : 4.743e-03
: 91 : vars : 4.718e-03
: 92 : vars : 4.717e-03
: 93 : vars : 4.714e-03
: 94 : vars : 4.693e-03
: 95 : vars : 4.692e-03
: 96 : vars : 4.566e-03
: 97 : vars : 4.550e-03
: 98 : vars : 4.540e-03
: 99 : vars : 4.535e-03
: 100 : vars : 4.488e-03
: 101 : vars : 4.488e-03
: 102 : vars : 4.473e-03
: 103 : vars : 4.431e-03
: 104 : vars : 4.420e-03
: 105 : vars : 4.414e-03
: 106 : vars : 4.366e-03
: 107 : vars : 4.330e-03
: 108 : vars : 4.258e-03
: 109 : vars : 4.241e-03
: 110 : vars : 4.171e-03
: 111 : vars : 4.115e-03
: 112 : vars : 4.039e-03
: 113 : vars : 4.033e-03
: 114 : vars : 4.005e-03
: 115 : vars : 3.984e-03
: 116 : vars : 3.960e-03
: 117 : vars : 3.896e-03
: 118 : vars : 3.887e-03
: 119 : vars : 3.886e-03
: 120 : vars : 3.870e-03
: 121 : vars : 3.864e-03
: 122 : vars : 3.853e-03
: 123 : vars : 3.806e-03
: 124 : vars : 3.801e-03
: 125 : vars : 3.799e-03
: 126 : vars : 3.791e-03
: 127 : vars : 3.766e-03
: 128 : vars : 3.754e-03
: 129 : vars : 3.727e-03
: 130 : vars : 3.722e-03
: 131 : vars : 3.700e-03
: 132 : vars : 3.685e-03
: 133 : vars : 3.650e-03
: 134 : vars : 3.650e-03
: 135 : vars : 3.581e-03
: 136 : vars : 3.574e-03
: 137 : vars : 3.564e-03
: 138 : vars : 3.557e-03
: 139 : vars : 3.545e-03
: 140 : vars : 3.540e-03
: 141 : vars : 3.526e-03
: 142 : vars : 3.500e-03
: 143 : vars : 3.475e-03
: 144 : vars : 3.464e-03
: 145 : vars : 3.415e-03
: 146 : vars : 3.393e-03
: 147 : vars : 3.387e-03
: 148 : vars : 3.382e-03
: 149 : vars : 3.355e-03
: 150 : vars : 3.353e-03
: 151 : vars : 3.321e-03
: 152 : vars : 3.313e-03
: 153 : vars : 3.296e-03
: 154 : vars : 3.293e-03
: 155 : vars : 3.225e-03
: 156 : vars : 3.191e-03
: 157 : vars : 3.149e-03
: 158 : vars : 3.129e-03
: 159 : vars : 3.114e-03
: 160 : vars : 3.081e-03
: 161 : vars : 3.058e-03
: 162 : vars : 3.035e-03
: 163 : vars : 3.016e-03
: 164 : vars : 2.975e-03
: 165 : vars : 2.943e-03
: 166 : vars : 2.924e-03
: 167 : vars : 2.916e-03
: 168 : vars : 2.910e-03
: 169 : vars : 2.823e-03
: 170 : vars : 2.814e-03
: 171 : vars : 2.786e-03
: 172 : vars : 2.722e-03
: 173 : vars : 2.714e-03
: 174 : vars : 2.707e-03
: 175 : vars : 2.630e-03
: 176 : vars : 2.626e-03
: 177 : vars : 2.625e-03
: 178 : vars : 2.622e-03
: 179 : vars : 2.618e-03
: 180 : vars : 2.590e-03
: 181 : vars : 2.549e-03
: 182 : vars : 2.450e-03
: 183 : vars : 2.419e-03
: 184 : vars : 2.404e-03
: 185 : vars : 2.318e-03
: 186 : vars : 2.300e-03
: 187 : vars : 2.285e-03
: 188 : vars : 2.278e-03
: 189 : vars : 2.234e-03
: 190 : vars : 2.197e-03
: 191 : vars : 2.168e-03
: 192 : vars : 2.080e-03
: 193 : vars : 1.926e-03
: 194 : vars : 1.792e-03
: 195 : vars : 1.575e-03
: 196 : vars : 1.483e-03
: 197 : vars : 1.395e-03
: 198 : vars : 1.387e-03
: 199 : vars : 1.271e-03
: 200 : vars : 1.253e-03
: 201 : vars : 1.190e-03
: 202 : vars : 1.145e-03
: 203 : vars : 1.137e-03
: 204 : vars : 9.910e-04
: 205 : vars : 9.905e-04
: 206 : vars : 9.381e-04
: 207 : vars : 8.604e-04
: 208 : vars : 7.069e-04
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.74176
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.5364
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.26808
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.09232
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00184 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0125 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0862 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.753
: dataset TMVA_CNN_CPU : 0.743
: dataset TMVA_DNN_CPU : 0.740
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.045 (0.305) 0.385 (0.575) 0.605 (0.880)
: dataset TMVA_CNN_CPU : 0.075 (0.138) 0.315 (0.385) 0.602 (0.731)
: dataset TMVA_DNN_CPU : 0.055 (0.140) 0.381 (0.702) 0.675 (0.858)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m