Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
unuranDemo.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_unuran
3/// Example macro to show unuran capabilities
4/// The results are compared with what is obtained using TRandom or TF1::GetRandom
5/// The macro is divided in 3 parts:
6/// - testStringAPI : show how to use string API of UNURAN to generate Gaussian random numbers
7/// - testDistr1D : show how to pass a 1D distribution object to UNURAN to generate numbers
8/// according to the given distribution object
9/// - testDistrMultiDIm : show how to pass a multidimensional distribution object to UNURAN
10///
11///
12/// To execute the macro type in:
13///
14/// ~~~{.cpp}
15/// root[0]: gSystem->Load("libMathCore");
16/// root[0]: gSystem->Load("libUnuran");
17/// root[0]: .x unuranDemo.C+
18/// ~~~
19///
20/// \macro_code
21///
22/// \author Lorenzo Moneta
23
24
25#include "TStopwatch.h"
26
27#include "TUnuran.h"
28#include "TUnuranContDist.h"
30#include "TUnuranDiscrDist.h"
31#include "TUnuranEmpDist.h"
32
33#include "TH1.h"
34#include "TH3.h"
35#include "TF3.h"
36#include "TMath.h"
37
38#include "TRandom2.h"
39#include "TSystem.h"
40#include "TStyle.h"
41
42#include "TApplication.h"
43#include "TCanvas.h"
44
45#include "Math/ProbFunc.h"
46#include "Math/DistFunc.h"
47
48#include <iostream>
49#include <cassert>
50
51using std::cout;
52using std::endl;
53
54// number of distribution generated points
55#define NGEN 100000
56
57int izone = 0;
58TCanvas * c1 = nullptr;
59
60// test using UNURAN string interface
61void testStringAPI() {
62
63 TH1D * h1 = new TH1D("h1G","gaussian distribution from Unuran",100,-10,10);
64 TH1D * h2 = new TH1D("h2G","gaussian distribution from TRandom",100,-10,10);
65
66 cout << "\nTest using UNURAN string API \n\n";
67
68
70 if (! unr.Init( "normal()", "method=arou") ) {
71 cout << "Error initializing unuran" << endl;
72 return;
73 }
74
75 int n = NGEN;
77 w.Start();
78
79 for (int i = 0; i < n; ++i) {
80 double x = unr.Sample();
81 h1->Fill( x );
82 }
83
84 w.Stop();
85 cout << "Time using Unuran method " << unr.MethodName() << "\t=\t " << w.CpuTime() << endl;
86
87
88 // use TRandom::Gaus
89 w.Start();
90 for (int i = 0; i < n; ++i) {
91 double x = gRandom->Gaus(0,1);
92 h2->Fill( x );
93 }
94
95 w.Stop();
96 cout << "Time using TRandom::Gaus \t=\t " << w.CpuTime() << endl;
97
98 assert(c1 != nullptr);
99 c1->cd(++izone);
100 h1->Draw();
101 c1->cd(++izone);
102 h2->Draw();
103
104}
105
106
107
108double distr(double *x, double *p) {
109 return ROOT::Math::breitwigner_pdf(x[0],p[0],p[1]);
110}
111
112double cdf(double *x, double *p) {
113 return ROOT::Math::breitwigner_cdf(x[0],p[0],p[1]);
114}
115
116// test of unuran passing as input a distribution object( a BreitWigner) distribution
117void testDistr1D() {
118
119 cout << "\nTest 1D Continous distributions\n\n";
120
121 TH1D * h1 = new TH1D("h1BW","Breit-Wigner distribution from Unuran",100,-10,10);
122 TH1D * h2 = new TH1D("h2BW","Breit-Wigner distribution from GetRandom",100,-10,10);
123
124
125
126 TF1 * f = new TF1("distrFunc",distr,-10,10,2);
127 double par[2] = {1,0}; // values are gamma and mean
128 f->SetParameters(par);
129
130 TF1 * fc = new TF1("cdfFunc",cdf,-10,10,2);
131 fc->SetParameters(par);
132
133 // create Unuran 1D distribution object
135 // to use a different random number engine do:
136 TRandom2 * random = new TRandom2();
137 int logLevel = 2;
139
140 // select unuran method for generating the random numbers
141 std::string method = "tdr";
142 //std::string method = "method=auto";
143 // "method=hinv"
144 // set the cdf for some methods like hinv that requires it
145 // dist.SetCdf(fc);
146
147 //cout << "unuran method is " << method << endl;
148
149 if (!unr.Init(dist,method) ) {
150 cout << "Error initializing unuran" << endl;
151 return;
152 }
153
154
155
157 w.Start();
158
159 int n = NGEN;
160 for (int i = 0; i < n; ++i) {
161 double x = unr.Sample();
162 h1->Fill( x );
163 }
164
165 w.Stop();
166 cout << "Time using Unuran method " << unr.MethodName() << "\t=\t " << w.CpuTime() << endl;
167
168 w.Start();
169 for (int i = 0; i < n; ++i) {
170 double x = f->GetRandom();
171 h2->Fill( x );
172 }
173
174 w.Stop();
175 cout << "Time using TF1::GetRandom() \t=\t " << w.CpuTime() << endl;
176
177 c1->cd(++izone);
178 h1->Draw();
179
180 c1->cd(++izone);
181 h2->Draw();
182
183 std::cout << " chi2 test of UNURAN vs GetRandom generated histograms: " << std::endl;
184 h1->Chi2Test(h2,"UUP");
185
186}
187
188// 3D gaussian distribution
189double gaus3d(double *x, double *p) {
190
191 double sigma_x = p[0];
192 double sigma_y = p[1];
193 double sigma_z = p[2];
194 double rho = p[2];
195 double u = x[0] / sigma_x ;
196 double v = x[1] / sigma_y ;
197 double w = x[2] / sigma_z ;
198 double c = 1 - rho*rho ;
199 double result = (1 / (2 * TMath::Pi() * sigma_x * sigma_y * sigma_z * sqrt(c)))
200 * exp (-(u * u - 2 * rho * u * v + v * v + w*w) / (2 * c));
201 return result;
202}
203
204// test of unuran passing as input a multi-dimension distribution object
205void testDistrMultiDim() {
206
207 cout << "\nTest Multidimensional distributions\n\n";
208
209 TH3D * h1 = new TH3D("h13D","gaussian 3D distribution from Unuran (vnrou)",50,-10,10,50,-10,10,50,-10,10);
210 TH3D * h2 = new TH3D("h23D","gaussian 3D distribution from Unuran (hitro)",50,-10,10,50,-10,10,50,-10,10);
211 TH3D * h3 = new TH3D("h33D","gaussian 3D distribution from GetRandom",50,-10,10,50,-10,10,50,-10,10);
212
213
214
215 TF3 * f = new TF3("g3d",gaus3d,-10,10,-10,10,-10,10,3);
216 double par[3] = {2,2,0.5};
217 f->SetParameters(par);
218
219
220
223
224 //std::string method = "method=hitro;use_boundingrectangle=false ";
225 std::string method = "vnrou";
226 if ( ! unr.Init(dist,method) ) {
227 cout << "Error initializing unuran" << endl;
228 return;
229 }
230
232 w.Start();
233
234 double x[3];
235 for (int i = 0; i < NGEN; ++i) {
236 unr.SampleMulti(x);
237 h1->Fill(x[0],x[1],x[2]);
238 }
239
240 w.Stop();
241 cout << "Time using Unuran method " << unr.MethodName() << "\t=\t\t " << w.CpuTime() << endl;
242
243 assert(c1 != nullptr);
244 c1->cd(++izone);
245 h1->Draw();
246
247
248 // use a different UNURAN method
249
250 method = "hitro";
251 if ( ! unr.Init(dist,method) ) {
252 cout << "Error re-initializing unuran" << endl;
253 return;
254 }
255
256 w.Start();
257
258 for (int i = 0; i < NGEN; ++i) {
259 unr.SampleMulti(x);
260 h2->Fill(x[0],x[1],x[2]);
261 }
262
263 w.Stop();
264 cout << "Time using Unuran method " << unr.MethodName() << "\t=\t\t " << w.CpuTime() << endl;
265
266
267 // need to set a reasonable number of points in TF1 to get acceptable quality from GetRandom to
268 int np = 100;
269 f->SetNpx(np);
270 f->SetNpy(np);
271 f->SetNpz(np);
272
273 w.Start();
274 for (int i = 0; i < NGEN; ++i) {
275 f->GetRandom3(x[0],x[1],x[2]);
276 h3->Fill(x[0],x[1],x[2]);
277 }
278
279 w.Stop();
280 cout << "Time using TF1::GetRandom \t\t=\t " << w.CpuTime() << endl;
281
282
283 c1->cd(++izone);
284 h3->Draw();
285
286 std::cout << " chi2 test of UNURAN vnrou vs GetRandom generated histograms: " << std::endl;
287 h1->Chi2Test(h3,"UUP");
288 std::cout << " chi2 test of UNURAN hitro vs GetRandom generated histograms: " << std::endl;
289 h2->Chi2Test(h3,"UUP");
290
291}
292//_____________________________________________
293//
294// example of discrete distributions
295
296double poisson(double * x, double * p) {
297 return ROOT::Math::poisson_pdf(int(x[0]),p[0]);
298}
299
300void testDiscDistr() {
301
302 cout << "\nTest Discrete distributions\n\n";
303
304 TH1D * h1 = new TH1D("h1PS","Unuran Poisson prob",20,0,20);
305 TH1D * h2 = new TH1D("h2PS","Poisson dist from TRandom",20,0,20);
306
307 double mu = 5;
308
309 TF1 * f = new TF1("fps",poisson,1,0,1);
310 f->SetParameter(0,mu);
311
313 TUnuran unr;
314
315 // dari method (needs also the mode and pmf sum)
316 dist2.SetMode(int(mu) );
317 dist2.SetProbSum(1.0);
318 bool ret = unr.Init(dist2,"dari");
319 if (!ret) return;
320
322 w.Start();
323
324 int n = NGEN;
325 for (int i = 0; i < n; ++i) {
326 int k = unr.SampleDiscr();
327 h1->Fill( double(k) );
328 }
329
330 w.Stop();
331 cout << "Time using Unuran method " << unr.MethodName() << "\t=\t\t " << w.CpuTime() << endl;
332
333 w.Start();
334 for (int i = 0; i < n; ++i) {
335 h2->Fill( gRandom->Poisson(mu) );
336 }
337 cout << "Time using TRandom::Poisson " << "\t=\t\t " << w.CpuTime() << endl;
338
339 c1->cd(++izone);
340 h1->SetMarkerStyle(20);
341 h1->Draw("E");
342 h2->Draw("same");
343
344 std::cout << " chi2 test of UNURAN vs TRandom generated histograms: " << std::endl;
345 h1->Chi2Test(h2,"UUP");
346
347}
348
349//_____________________________________________
350//
351// example of empirical distributions
352
353void testEmpDistr() {
354
355
356 cout << "\nTest Empirical distributions using smoothing\n\n";
357
358 // start with a set of data
359 // for example 1000 two-gaussian data
360 const int Ndata = 1000;
361 double x[Ndata];
362 for (int i = 0; i < Ndata; ++i) {
363 if (i < 0.5*Ndata )
364 x[i] = gRandom->Gaus(-1.,1.);
365 else
366 x[i] = gRandom->Gaus(1.,3.);
367 }
368
369 TH1D * h0 = new TH1D("h0Ref","Starting data",100,-10,10);
370 TH1D * h1 = new TH1D("h1Unr","Unuran unbin Generated data",100,-10,10);
371 TH1D * h1b = new TH1D("h1bUnr","Unuran bin Generated data",100,-10,10);
372 TH1D * h2 = new TH1D("h2GR","Data from TH1::GetRandom",100,-10,10);
373
374 h0->FillN(Ndata,x,nullptr,1); // fill histogram with starting data
375
376 TUnuran unr;
378
379
381 int n = NGEN;
382
383 w.Start();
384 if (!unr.Init(dist)) return;
385 for (int i = 0; i < n; ++i) {
386 h1->Fill( unr.Sample() );
387 }
388
389 w.Stop();
390 cout << "Time using Unuran unbin " << unr.MethodName() << "\t=\t\t " << w.CpuTime() << endl;
391
393
394 w.Start();
395 if (!unr.Init(binDist)) return;
396 for (int i = 0; i < n; ++i) {
397 h1b->Fill( unr.Sample() );
398 }
399 w.Stop();
400 cout << "Time using Unuran bin " << unr.MethodName() << "\t=\t\t " << w.CpuTime() << endl;
401
402 w.Start();
403 for (int i = 0; i < n; ++i) {
404 h2->Fill( h0->GetRandom() );
405 }
406 cout << "Time using TH1::GetRandom " << "\t=\t\t " << w.CpuTime() << endl;
407
408 c1->cd(++izone);
409
410 h2->Draw();
412 h1->Draw("same");
413 h1b->SetLineColor(kBlue);
414 h1b->Draw("same");
415
416
417}
418
419
420
421void unuranDemo() {
422
423 //gRandom->SetSeed(0);
424
425 // load libraries
426 gSystem->Load("libMathCore");
427 gSystem->Load("libUnuran");
428
429 // create canvas
430
431 c1 = new TCanvas("c1_unuranMulti","Multidimensional distribution",10,10,1000,1000);
432 c1->Divide(2,4);
433 gStyle->SetOptFit();
434
436 c1->Update();
437 testDistr1D();
438 c1->Update();
440 c1->Update();
442 c1->Update();
443 testEmpDistr();
444 c1->Update();
445
446
447}
#define f(i)
Definition RSha256.hxx:104
#define c(i)
Definition RSha256.hxx:101
@ kRed
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
R__EXTERN TStyle * gStyle
Definition TStyle.h:436
R__EXTERN TSystem * gSystem
Definition TSystem.h:561
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition TAttLine.h:42
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:41
The Canvas class.
Definition TCanvas.h:23
1-Dim function class
Definition TF1.h:233
A 3-Dim function with parameters.
Definition TF3.h:28
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:693
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3315
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3037
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms.
Definition TH1.cxx:1979
3-D histogram with a double per channel (see TH1 documentation)
Definition TH3.h:357
Random number generator class based on the maximally quidistributed combined Tausworthe generator by ...
Definition TRandom2.h:27
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition TRandom.cxx:275
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:404
Stopwatch class.
Definition TStopwatch.h:28
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
Definition TStyle.cxx:1593
virtual int Load(const char *module, const char *entry="", Bool_t system=kFALSE)
Load a shared library.
Definition TSystem.cxx:1857
TUnuranContDist class describing one dimensional continuous distribution.
TUnuranDiscrDist class for one dimensional discrete distribution.
TUnuranEmpDist class for describing empirical distributions.
TUnuranMultiContDist class describing multi dimensional continuous distributions.
TUnuran class.
Definition TUnuran.h:79
double breitwigner_pdf(double x, double gamma, double x0=0)
Probability density function of Breit-Wigner distribution, which is similar, just a different definit...
double poisson_pdf(unsigned int n, double mu)
Probability density function of the Poisson distribution.
double breitwigner_cdf(double x, double gamma, double x0=0)
Cumulative distribution function (lower tail) of the Breit_Wigner distribution and it is similar (jus...
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
TH1F * h1
Definition legend1.C:5
double dist(Rotation3D const &r1, Rotation3D const &r2)
double poisson(double x, double par)
Definition MathFuncs.h:217
constexpr Double_t Pi()
Definition TMath.h:37