Example macro to show unuran capabilities The results are compared with what is obtained using TRandom or TF1::GetRandom The macro is divided in 3 parts:
#include <iostream>
#include <cassert>
using std::cout;
using std::endl;
#define NGEN 100000
TH1D *
h1 =
new TH1D(
"h1G",
"gaussian distribution from Unuran",100,-10,10);
TH1D * h2 =
new TH1D(
"h2G",
"gaussian distribution from TRandom",100,-10,10);
cout << "\nTest using UNURAN string API \n\n";
if (!
unr.Init(
"normal()",
"method=arou") ) {
cout << "Error initializing unuran" << endl;
return;
}
for (
int i = 0; i <
n; ++i) {
}
cout <<
"Time using Unuran method " <<
unr.MethodName() <<
"\t=\t " <<
w.CpuTime() << endl;
for (
int i = 0; i <
n; ++i) {
}
cout <<
"Time using TRandom::Gaus \t=\t " <<
w.CpuTime() << endl;
}
double distr(
double *
x,
double *
p) {
}
double cdf(
double *
x,
double *
p) {
}
cout << "\nTest 1D Continous distributions\n\n";
TH1D *
h1 =
new TH1D(
"h1BW",
"Breit-Wigner distribution from Unuran",100,-10,10);
TH1D *
h2 =
new TH1D(
"h2BW",
"Breit-Wigner distribution from GetRandom",100,-10,10);
double par[2] = {1,0};
cout << "Error initializing unuran" << endl;
return;
}
for (
int i = 0; i <
n; ++i) {
}
cout <<
"Time using Unuran method " <<
unr.MethodName() <<
"\t=\t " <<
w.CpuTime() << endl;
for (
int i = 0; i <
n; ++i) {
double x =
f->GetRandom();
}
cout <<
"Time using TF1::GetRandom() \t=\t " <<
w.CpuTime() << endl;
std::cout << " chi2 test of UNURAN vs GetRandom generated histograms: " << std::endl;
}
* exp (-(
u *
u - 2 * rho *
u *
v +
v *
v +
w*
w) / (2 *
c));
}
cout << "\nTest Multidimensional distributions\n\n";
TH3D *
h1 =
new TH3D(
"h13D",
"gaussian 3D distribution from Unuran (vnrou)",50,-10,10,50,-10,10,50,-10,10);
TH3D *
h2 =
new TH3D(
"h23D",
"gaussian 3D distribution from Unuran (hitro)",50,-10,10,50,-10,10,50,-10,10);
TH3D *
h3 =
new TH3D(
"h33D",
"gaussian 3D distribution from GetRandom",50,-10,10,50,-10,10,50,-10,10);
double par[3] = {2,2,0.5};
cout << "Error initializing unuran" << endl;
return;
}
for (
int i = 0; i <
NGEN; ++i) {
}
cout <<
"Time using Unuran method " <<
unr.MethodName() <<
"\t=\t\t " <<
w.CpuTime() << endl;
cout << "Error re-initializing unuran" << endl;
return;
}
for (
int i = 0; i <
NGEN; ++i) {
h2->Fill(
x[0],
x[1],
x[2]);
}
cout <<
"Time using Unuran method " <<
unr.MethodName() <<
"\t=\t\t " <<
w.CpuTime() << endl;
for (
int i = 0; i <
NGEN; ++i) {
f->GetRandom3(
x[0],
x[1],
x[2]);
h3->Fill(
x[0],
x[1],
x[2]);
}
cout <<
"Time using TF1::GetRandom \t\t=\t " <<
w.CpuTime() << endl;
std::cout << " chi2 test of UNURAN vnrou vs GetRandom generated histograms: " << std::endl;
std::cout << " chi2 test of UNURAN hitro vs GetRandom generated histograms: " << std::endl;
}
}
cout << "\nTest Discrete distributions\n\n";
TH1D *
h1 =
new TH1D(
"h1PS",
"Unuran Poisson prob",20,0,20);
TH1D *
h2 =
new TH1D(
"h2PS",
"Poisson dist from TRandom",20,0,20);
double mu = 5;
TF1 *
f =
new TF1(
"fps",poisson,1,0,1);
for (
int i = 0; i <
n; ++i) {
int k =
unr.SampleDiscr();
}
cout <<
"Time using Unuran method " <<
unr.MethodName() <<
"\t=\t\t " <<
w.CpuTime() << endl;
for (
int i = 0; i <
n; ++i) {
}
cout <<
"Time using TRandom::Poisson " <<
"\t=\t\t " <<
w.CpuTime() << endl;
std::cout << " chi2 test of UNURAN vs TRandom generated histograms: " << std::endl;
}
cout << "\nTest Empirical distributions using smoothing\n\n";
for (
int i = 0; i <
Ndata; ++i) {
else
}
TH1D *
h0 =
new TH1D(
"h0Ref",
"Starting data",100,-10,10);
TH1D *
h1 =
new TH1D(
"h1Unr",
"Unuran unbin Generated data",100,-10,10);
TH1D *
h1b =
new TH1D(
"h1bUnr",
"Unuran bin Generated data",100,-10,10);
TH1D *
h2 =
new TH1D(
"h2GR",
"Data from TH1::GetRandom",100,-10,10);
if (!
unr.Init(dist))
return;
for (
int i = 0; i <
n; ++i) {
}
cout <<
"Time using Unuran unbin " <<
unr.MethodName() <<
"\t=\t\t " <<
w.CpuTime() << endl;
for (
int i = 0; i <
n; ++i) {
}
cout <<
"Time using Unuran bin " <<
unr.MethodName() <<
"\t=\t\t " <<
w.CpuTime() << endl;
for (
int i = 0; i <
n; ++i) {
h2->Fill(
h0->GetRandom() );
}
cout <<
"Time using TH1::GetRandom " <<
"\t=\t\t " <<
w.CpuTime() << endl;
}
c1 =
new TCanvas(
"c1_unuranMulti",
"Multidimensional distribution",10,10,1000,1000);
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
R__EXTERN TRandom * gRandom
R__EXTERN TStyle * gStyle
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
A 3-Dim function with parameters.
1-D histogram with a double per channel (see TH1 documentation)
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms.
3-D histogram with a double per channel (see TH1 documentation)
Random number generator class based on the maximally quidistributed combined Tausworthe generator by ...
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
TUnuranContDist class describing one dimensional continuous distribution.
TUnuranDiscrDist class for one dimensional discrete distribution.
TUnuranEmpDist class for describing empirical distributions.
TUnuranMultiContDist class describing multi dimensional continuous distributions.
double breitwigner_pdf(double x, double gamma, double x0=0)
Probability density function of Breit-Wigner distribution, which is similar, just a different definit...
double poisson_pdf(unsigned int n, double mu)
Probability density function of the Poisson distribution.
double breitwigner_cdf(double x, double gamma, double x0=0)
Cumulative distribution function (lower tail) of the Breit_Wigner distribution and it is similar (jus...
double dist(Rotation3D const &r1, Rotation3D const &r2)
double poisson(double x, double par)