Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
HistoToWorkspaceFactoryFast.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id: cranmer $
2// Author: Kyle Cranmer, Akira Shibata
3/*************************************************************************
4 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11////////////////////////////////////////////////////////////////////////////////
12
13/** \class RooStats::HistFactory::HistoToWorkspaceFactoryFast
14 * \ingroup HistFactory
15 * This class provides helper functions for creating likelihood models from histograms.
16 * It is used by RooStats::HistFactory::MakeModelAndMeasurementFast.
17 *
18 * A tutorial showing how to create a HistFactory model is hf001_example.C
19 */
20
21
22#include <RooAddition.h>
23#include <RooBinWidthFunction.h>
24#include <RooBinning.h>
25#include <RooCategory.h>
26#include <RooConstVar.h>
27#include <RooDataHist.h>
28#include <RooDataSet.h>
29#include <RooFit/ModelConfig.h>
30#include <RooFitResult.h>
31#include <RooFormulaVar.h>
32#include <RooGamma.h>
33#include <RooGaussian.h>
34#include <RooGlobalFunc.h>
35#include <RooHelpers.h>
36#include <RooHistFunc.h>
37#include <RooNumIntConfig.h>
38#include <RooPoisson.h>
39#include <RooPolyVar.h>
40#include <RooProdPdf.h>
41#include <RooProduct.h>
42#include <RooRandom.h>
43#include <RooRealSumPdf.h>
44#include <RooRealVar.h>
45#include <RooSimultaneous.h>
46#include <RooWorkspace.h>
47
52
53#include "HFMsgService.h"
54
55#include "TH1.h"
56
57// specific to this package
64
65#include <algorithm>
66#include <fstream>
67#include <iomanip>
68#include <memory>
69#include <set>
70#include <utility>
71
72constexpr double alphaLow = -5.0;
73constexpr double alphaHigh = 5.0;
74
75std::vector<double> histToVector(TH1 const &hist)
76{
77 // Must get the full size of the TH1 (No direct method to do this...)
78 int numBins = hist.GetNbinsX() * hist.GetNbinsY() * hist.GetNbinsZ();
79 std::vector<double> out(numBins);
80 int histIndex = 0;
81 for (int i = 0; i < numBins; ++i) {
82 while (hist.IsBinUnderflow(histIndex) || hist.IsBinOverflow(histIndex)) {
83 ++histIndex;
84 }
85 out[i] = hist.GetBinContent(histIndex);
86 ++histIndex;
87 }
88 return out;
89}
90
91// use this order for safety on library loading
92using namespace RooStats;
93using std::string, std::vector;
94
95using namespace RooStats::HistFactory::Detail;
97
98namespace RooStats::HistFactory {
99
104
106 Configuration const& cfg) :
107 fSystToFix( measurement.GetConstantParams() ),
108 fParamValues( measurement.GetParamValues() ),
109 fNomLumi( measurement.GetLumi() ),
110 fLumiError( measurement.GetLumi()*measurement.GetLumiRelErr() ),
111 fLowBin( measurement.GetBinLow() ),
112 fHighBin( measurement.GetBinHigh() ),
113 fCfg{cfg} {
114
115 // Set Preprocess functions
116 SetFunctionsToPreprocess( measurement.GetPreprocessFunctions() );
117
118 }
119
121
122 // Configure a workspace by doing any
123 // necessary post-processing and by
124 // creating a ModelConfig
125
126 // Make a ModelConfig and configure it
127 ModelConfig * proto_config = static_cast<ModelConfig *>(ws_single->obj("ModelConfig"));
128 if( proto_config == nullptr ) {
129 cxcoutFHF << "Error: Did not find 'ModelConfig' object in file: " << ws_single->GetName() << std::endl;
130 throw hf_exc();
131 }
132
133 if( measurement.GetPOIList().empty() ) {
134 cxcoutWHF << "No Parametetrs of interest are set" << std::endl;
135 }
136
137
138 std::stringstream sstream;
139 sstream << "Setting Parameter(s) of Interest as: ";
140 for(auto const& item : measurement.GetPOIList()) {
141 sstream << item << " ";
142 }
143 cxcoutIHF << sstream.str() << std::endl;
144
145 RooArgSet params;
146 for(auto const& poi_name : measurement.GetPOIList()) {
147 if(RooRealVar* poi = (RooRealVar*) ws_single->var(poi_name)){
148 params.add(*poi);
149 }
150 else {
151 cxcoutWHF << "WARNING: Can't find parameter of interest: " << poi_name
152 << " in Workspace. Not setting in ModelConfig." << std::endl;
153 // throw hf_exc();
154 }
155 }
156 proto_config->SetParametersOfInterest(params);
157
158 // Name of an 'edited' model, if necessary
159 std::string NewModelName = "newSimPdf"; // <- This name is hard-coded in HistoToWorkspaceFactoryFast::EditSyt. Probably should be changed to : std::string("new") + ModelName;
160
161 // Get the pdf
162 // Notice that we get the "new" pdf, this is the one that is
163 // used in the creation of these asimov datasets since they
164 // are fitted (or may be, at least).
165 RooAbsPdf* pdf = ws_single->pdf(NewModelName);
166 if( !pdf ) pdf = ws_single->pdf( ModelName );
167 const RooArgSet* observables = ws_single->set("observables");
168
169 // Set the ModelConfig's Params of Interest
170 if(!measurement.GetPOIList().empty()){
171 proto_config->GuessObsAndNuisance(*observables, RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO));
172 }
173
174 // Now, let's loop over any additional asimov datasets
175 // that we need to make
176
177 // Create a SnapShot of the nominal values
178 std::string SnapShotName = "NominalParamValues";
179 ws_single->saveSnapshot(SnapShotName, ws_single->allVars());
180
181 for( unsigned int i=0; i<measurement.GetAsimovDatasets().size(); ++i) {
182
183 // Set the variable values and "const" ness with the workspace
184 RooStats::HistFactory::Asimov& asimov = measurement.GetAsimovDatasets().at(i);
185 std::string AsimovName = asimov.GetName();
186
187 cxcoutPHF << "Generating additional Asimov Dataset: " << AsimovName << std::endl;
189 std::unique_ptr<RooAbsData> asimov_dataset{AsymptoticCalculator::GenerateAsimovData(*pdf, *observables)};
190
191 cxcoutPHF << "Importing Asimov dataset" << std::endl;
192 bool failure = ws_single->import(*asimov_dataset, RooFit::Rename(AsimovName.c_str()));
193 if( failure ) {
194 cxcoutFHF << "Error: Failed to import Asimov dataset: " << AsimovName << std::endl;
195 throw hf_exc();
196 }
197
198 // Load the snapshot at the end of every loop iteration
199 // so we start each loop with a "clean" snapshot
200 ws_single->loadSnapshot(SnapShotName.c_str());
201 }
202
203 // Cool, we're done
204 return; // ws_single;
205 }
206
207
208 // We want to eliminate this interface and use the measurement directly
210
211 // This is a pretty light-weight wrapper function
212 //
213 // Take a fully configured measurement as well as
214 // one of its channels
215 //
216 // Return a workspace representing that channel
217 // Do this by first creating a vector of EstimateSummary's
218 // and this by configuring the workspace with any post-processing
219
220 // Get the channel's name
221 string ch_name = channel.GetName();
222
223 // Create a workspace for a SingleChannel from the Measurement Object
224 std::unique_ptr<RooWorkspace> ws_single{this->MakeSingleChannelWorkspace(measurement, channel)};
225 if( ws_single == nullptr ) {
226 cxcoutFHF << "Error: Failed to make Single-Channel workspace for channel: " << ch_name
227 << " and measurement: " << measurement.GetName() << std::endl;
228 throw hf_exc();
229 }
230
231 // Finally, configure that workspace based on
232 // properties of the measurement
234
235 return RooFit::makeOwningPtr(std::move(ws_single));
236
237 }
238
240
241 // This function takes a fully configured measurement
242 // which may contain several channels and returns
243 // a workspace holding the combined model
244 //
245 // This can be used, for example, within a script to produce
246 // a combined workspace on-the-fly
247 //
248 // This is a static function (for now) to make
249 // it a one-liner
250
251
252 Configuration config;
253 return MakeCombinedModel(measurement,config);
254 }
255
257
258 // This function takes a fully configured measurement
259 // which may contain several channels and returns
260 // a workspace holding the combined model
261 //
262 // This can be used, for example, within a script to produce
263 // a combined workspace on-the-fly
264 //
265 // This is a static function (for now) to make
266 // it a one-liner
267
269
270 // First, we create an instance of a HistFactory
272
273 // Loop over the channels and create the individual workspaces
274 std::vector<std::unique_ptr<RooWorkspace>> channel_workspaces;
275 std::vector<std::string> channel_names;
276
277 for(HistFactory::Channel& channel : measurement.GetChannels()) {
278
279 if( ! channel.CheckHistograms() ) {
280 cxcoutFHF << "MakeModelAndMeasurementsFast: Channel: " << channel.GetName()
281 << " has uninitialized histogram pointers" << std::endl;
282 throw hf_exc();
283 }
284
285 string ch_name = channel.GetName();
286 channel_names.push_back(ch_name);
287
288 // GHL: Renaming to 'MakeSingleChannelWorkspace'
289 channel_workspaces.emplace_back(histFactory.MakeSingleChannelModel(measurement, channel));
290 }
291
292
293 // Now, combine the individual channel workspaces to
294 // form the combined workspace
295 std::unique_ptr<RooWorkspace> ws{histFactory.MakeCombinedModel( channel_names, channel_workspaces )};
296
297
298 // Configure the workspace
300
301 // Done. Return the pointer
302 return RooFit::makeOwningPtr(std::move(ws));
303
304 }
305
306namespace {
307
308template <class Arg_t, typename... Args_t>
309Arg_t &emplace(RooWorkspace &ws, std::string const &name, Args_t &&...args)
310{
311 Arg_t arg{name.c_str(), name.c_str(), std::forward<Args_t>(args)...};
313 return *dynamic_cast<Arg_t *>(ws.arg(name));
314}
315
316} // namespace
317
318/// Create observables of type RooRealVar. Creates 1 to 3 observables, depending on the type of the histogram.
320 RooArgList observables;
321
322 for (unsigned int idx=0; idx < fObsNameVec.size(); ++idx) {
323 if (!proto.var(fObsNameVec[idx])) {
324 const TAxis *axis = (idx == 0) ? hist->GetXaxis() : (idx == 1 ? hist->GetYaxis() : hist->GetZaxis());
325 int nbins = axis->GetNbins();
326 // create observable
327 RooRealVar &obs = emplace<RooRealVar>(proto, fObsNameVec[idx], axis->GetXmin(), axis->GetXmax());
328 if(strlen(axis->GetTitle())>0) obs.SetTitle(axis->GetTitle());
329 obs.setBins(nbins);
330 if (axis->IsVariableBinSize()) {
331 RooBinning binning(nbins, axis->GetXbins()->GetArray());
332 obs.setBinning(binning);
333 }
334 }
335
336 observables.add(*proto.var(fObsNameVec[idx]));
337 }
338
339 return observables;
340}
341
342 /// Create the nominal hist function from `hist`, and register it in the workspace.
344 const RooArgList& observables) const {
345 if(hist) {
346 cxcoutI(HistFactory) << "processing hist " << hist->GetName() << std::endl;
347 } else {
348 cxcoutF(HistFactory) << "hist is empty" << std::endl;
349 R__ASSERT(hist != nullptr);
350 return nullptr;
351 }
352
353 // determine histogram dimensionality
354 unsigned int histndim(1);
355 std::string classname = hist->ClassName();
356 if (classname.find("TH1")==0) { histndim=1; }
357 else if (classname.find("TH2")==0) { histndim=2; }
358 else if (classname.find("TH3")==0) { histndim=3; }
359 R__ASSERT( histndim==fObsNameVec.size() );
360
361 prefix += "_Hist_alphanominal";
362
363 RooDataHist histDHist(prefix + "DHist","",observables,hist);
364
365 return &emplace<RooHistFunc>(proto, prefix, observables,histDHist,0);
366 }
367
368 namespace {
369
370 void makeGaussianConstraint(RooAbsArg& param, RooWorkspace& proto, bool isUniform,
371 std::vector<std::string> & constraintTermNames) {
372 std::string paramName = param.GetName();
373 std::string nomName = "nom_" + paramName;
374 std::string constraintName = paramName + "Constraint";
375
376 // do nothing if the constraint term already exists
377 if(proto.pdf(constraintName)) return;
378
379 // case systematic is uniform (assume they are like a Gaussian but with
380 // a large width (100 instead of 1)
381 const double gaussSigma = isUniform ? 100. : 1.0;
382 if (isUniform) {
383 cxcoutIHF << "Added a uniform constraint for " << paramName << " as a Gaussian constraint with a very large sigma " << std::endl;
384 }
385
389 nomParam.setConstant();
391 paramVar.setError(gaussSigma); // give param initial error to match gaussSigma
392 const_cast<RooArgSet*>(proto.set("globalObservables"))->add(nomParam);
393 }
394
395 /// Make list of abstract parameters that interpolate in space of variations.
397 RooArgList params( ("alpha_Hist") );
398
399 for(auto const& histoSys : histoSysList) {
400 params.add(getOrCreate<RooRealVar>(proto, "alpha_" + histoSys.GetName(), alphaLow, alphaHigh));
401 }
402
403 return params;
404 }
405
406 /// Create a linear interpolation object that holds nominal and systematics, import it into the workspace,
407 /// and return a pointer to it.
410 RooWorkspace& proto, const std::vector<HistoSys>& histoSysList,
411 const string& prefix,
412 const RooArgList& obsList) {
413
414 // now make function that linearly interpolates expectation between variations
415 // get low/high variations to interpolate between
416 std::vector<double> low;
417 std::vector<double> high;
420 for(unsigned int j=0; j<histoSysList.size(); ++j){
421 std::string str = prefix + "_" + std::to_string(j);
422
423 const HistoSys& histoSys = histoSysList.at(j);
424 auto lowDHist = std::make_unique<RooDataHist>(str+"lowDHist","",obsList, histoSys.GetHistoLow());
425 auto highDHist = std::make_unique<RooDataHist>(str+"highDHist","",obsList, histoSys.GetHistoHigh());
426 lowSet.addOwned(std::make_unique<RooHistFunc>((str+"low").c_str(),"",obsList,std::move(lowDHist),0));
427 highSet.addOwned(std::make_unique<RooHistFunc>((str+"high").c_str(),"",obsList,std::move(highDHist),0));
428 }
429
430 // this is sigma(params), a piece-wise linear interpolation
432 interp.setPositiveDefinite();
433 interp.setAllInterpCodes(4); // LM: change to 4 (piece-wise linear to 6th order polynomial interpolation + linear extrapolation )
434 // KC: interpo codes 1 etc. don't have proper analytic integral.
436 interp.setBinIntegrator(obsSet);
437 interp.forceNumInt();
438
439 proto.import(interp, RooFit::RecycleConflictNodes()); // individual params have already been imported in first loop of this function
440
441 return proto.arg(prefix);
442 }
443
444 }
445
446 // GHL: Consider passing the NormFactor list instead of the entire sample
447 std::unique_ptr<RooProduct> HistoToWorkspaceFactoryFast::CreateNormFactor(RooWorkspace& proto, string& channel, string& sigmaEpsilon, Sample& sample, bool doRatio){
448
449 std::vector<string> prodNames;
450
451 vector<NormFactor> normList = sample.GetNormFactorList();
454
455 string overallNorm_times_sigmaEpsilon = sample.GetName() + "_" + channel + "_scaleFactors";
456 auto sigEps = proto.arg(sigmaEpsilon);
457 assert(sigEps);
458 auto normFactor = std::make_unique<RooProduct>(overallNorm_times_sigmaEpsilon.c_str(), overallNorm_times_sigmaEpsilon.c_str(), RooArgList(*sigEps));
459
460 if(!normList.empty()){
461
462 for(NormFactor &norm : normList) {
463 string varname = norm.GetName();
464 if(doRatio) {
465 varname += "_" + channel;
466 }
467
468 // GHL: Check that the NormFactor doesn't already exist
469 // (it may have been created as a function expression
470 // during preprocessing)
471 std::stringstream range;
472 range << "[" << norm.GetVal() << "," << norm.GetLow() << "," << norm.GetHigh() << "]";
473
474 if( proto.obj(varname) == nullptr) {
475 cxcoutI(HistFactory) << "making normFactor: " << norm.GetName() << std::endl;
476 // remove "doRatio" and name can be changed when ws gets imported to the combined model.
477 emplace<RooRealVar>(proto, varname, norm.GetVal(), norm.GetLow(), norm.GetHigh());
478 proto.var(varname)->setError(0); // ensure factor is assigned an initial error, even if its zero
479 }
480
481 prodNames.push_back(varname);
482 rangeNames.push_back(range.str());
483 normFactorNames.push_back(varname);
484 }
485
486
487 for (const auto& name : prodNames) {
488 auto arg = proto.arg(name);
489 assert(arg);
490 normFactor->addTerm(arg);
491 }
492
493 }
494
495 unsigned int rangeIndex=0;
496 for( vector<string>::iterator nit = normFactorNames.begin(); nit!=normFactorNames.end(); ++nit){
497 if( count (normFactorNames.begin(), normFactorNames.end(), *nit) > 1 ){
498 cxcoutI(HistFactory) <<"<NormFactor Name =\""<<*nit<<"\"> is duplicated for <Sample Name=\""
499 << sample.GetName() << "\">, but only one factor will be included. \n Instead, define something like"
500 << "\n\t<Function Name=\""<<*nit<<"Squared\" Expression=\""<<*nit<<"*"<<*nit<<"\" Var=\""<<*nit<<rangeNames.at(rangeIndex)
501 << "\"> \nin your top-level XML's <Measurement> entry and use <NormFactor Name=\""<<*nit<<"Squared\" in your channel XML file."<< std::endl;
502 }
503 ++rangeIndex;
504 }
505
506 return normFactor;
507 }
508
510 string interpName,
511 std::vector<OverallSys>& systList,
514
515 // add variables for all the relative overall uncertainties we expect
516 totSystTermNames.push_back(prefix);
517
518 RooArgSet params(prefix.c_str());
521
522 std::map<std::string, double>::iterator itconstr;
523 for(unsigned int i = 0; i < systList.size(); ++i) {
524
525 OverallSys& sys = systList.at(i);
526 std::string strname = sys.GetName();
527 const char * name = strname.c_str();
528
529 // case of no systematic (is it possible)
530 if (meas.GetNoSyst().count(sys.GetName()) > 0 ) {
531 cxcoutI(HistFactory) << "HistoToWorkspaceFast::AddConstraintTerm - skip systematic " << sys.GetName() << std::endl;
532 continue;
533 }
534 // case systematic is a gamma constraint
535 if (meas.GetGammaSyst().count(sys.GetName()) > 0 ) {
536 double relerr = meas.GetGammaSyst().find(sys.GetName() )->second;
537 if (relerr <= 0) {
538 cxcoutI(HistFactory) << "HistoToWorkspaceFast::AddConstraintTerm - zero uncertainty assigned - skip systematic " << sys.GetName() << std::endl;
539 continue;
540 }
541 const double tauVal = 1./(relerr*relerr);
542 const double sqtau = 1./relerr;
543 RooRealVar &beta = emplace<RooRealVar>(proto, "beta_" + strname, 1., 0., 10.);
544 // the global observable (y_s)
545 RooRealVar &yvar = emplace<RooRealVar>(proto, "nom_" + std::string{beta.GetName()}, tauVal, 0., 10.);
546 // the rate of the gamma distribution (theta)
547 RooRealVar &theta = emplace<RooRealVar>(proto, "theta_" + strname, 1./tauVal);
548 // find alpha as function of beta
550
551 // add now the constraint itself Gamma_beta_constraint(beta, y+1, tau, 0 )
552 // build the gamma parameter k = as y_s + 1
553 RooAddition &kappa = emplace<RooAddition>(proto, "k_" + std::string{yvar.GetName()}, RooArgList{yvar, 1.0});
554 RooGamma &gamma = emplace<RooGamma>(proto, std::string{beta.GetName()} + "Constraint", beta, kappa, theta, RooFit::RooConst(0.0));
556 alphaOfBeta.Print("t");
557 gamma.Print("t");
558 }
559 constraintTermNames.push_back(gamma.GetName());
560 // set global observables
561 yvar.setConstant(true);
562 const_cast<RooArgSet*>(proto.set("globalObservables"))->add(yvar);
563
564 // add alphaOfBeta in the list of params to interpolate
565 params.add(alphaOfBeta);
566 cxcoutI(HistFactory) << "Added a gamma constraint for " << name << std::endl;
567
568 }
569 else {
570 RooRealVar& alpha = getOrCreate<RooRealVar>(proto, prefix + sys.GetName(), 0, alphaLow, alphaHigh);
571 // add the Gaussian constraint part
572 const bool isUniform = meas.GetUniformSyst().count(sys.GetName()) > 0;
574
575 // check if exists a log-normal constraint
576 if (meas.GetLogNormSyst().count(sys.GetName()) == 0 && meas.GetGammaSyst().count(sys.GetName()) == 0 ) {
577 // just add the alpha for the parameters of the FlexibleInterpVar function
578 params.add(alpha);
579 }
580 // case systematic is a log-normal constraint
581 if (meas.GetLogNormSyst().count(sys.GetName()) > 0 ) {
582 // log normal constraint for parameter
583 const double relerr = meas.GetLogNormSyst().find(sys.GetName() )->second;
584
586 proto, "alphaOfBeta_" + sys.GetName(), "x[0]*(pow(x[1],x[2])-1.)",
587 RooArgList{emplace<RooRealVar>(proto, "tau_" + sys.GetName(), 1. / relerr),
588 emplace<RooRealVar>(proto, "kappa_" + sys.GetName(), 1. + relerr), alpha});
589
590 cxcoutI(HistFactory) << "Added a log-normal constraint for " << name << std::endl;
592 alphaOfBeta.Print("t");
593 }
594 params.add(alphaOfBeta);
595 }
596
597 }
598 // add low/high vectors
599 lowVec.push_back(sys.GetLow());
600 highVec.push_back(sys.GetHigh());
601
602 } // end sys loop
603
604 if(!systList.empty()){
605 // this is epsilon(alpha_j), a piece-wise linear interpolation
606 // LinInterpVar interp( (interpName).c_str(), "", params, 1., lowVec, highVec);
607
608 assert(!params.empty());
609 assert(lowVec.size() == params.size());
610
611 FlexibleInterpVar interp( (interpName).c_str(), "", params, 1., lowVec, highVec);
612 interp.setAllInterpCodes(4); // LM: change to 4 (piece-wise exponential to 6th order polynomial interpolation + exponential extrapolation )
613 //interp.setAllInterpCodes(0); // simple linear interpolation
614 proto.import(interp); // params have already been imported in first loop of this function
615 } else{
616 // some strange behavior if params,lowVec,highVec are empty.
617 //cout << "WARNING: No OverallSyst terms" << std::endl;
618 emplace<RooConstVar>(proto, interpName, 1.); // params have already been imported in first loop of this function
619 }
620 }
621
622
625 assert(sampleScaleFactors.size() == sampleHistFuncs.size());
626
627 // for ith bin calculate totN_i = lumi * sum_j expected_j * syst_j
628
629 if (fObsNameVec.empty() && !fObsName.empty())
630 throw std::logic_error("HistFactory didn't process the observables correctly. Please file a bug report.");
631
632 auto firstHistFunc = dynamic_cast<const RooHistFunc*>(sampleHistFuncs.front().front());
633 if (!firstHistFunc) {
634 auto piecewiseInt = dynamic_cast<const PiecewiseInterpolation*>(sampleHistFuncs.front().front());
635 firstHistFunc = dynamic_cast<const RooHistFunc*>(piecewiseInt->nominalHist());
636 }
638
639 // Prepare a function to divide all bin contents by bin width to get a density:
640 auto &binWidth = emplace<RooBinWidthFunction>(proto, totName + "_binWidth", *firstHistFunc, true);
641
642 // Loop through samples and create products of their functions:
643 RooArgSet coefList;
645 for (unsigned int i=0; i < sampleHistFuncs.size(); ++i) {
646 assert(!sampleHistFuncs[i].empty());
647 coefList.add(*sampleScaleFactors[i]);
648
649 std::vector<RooAbsArg*>& thisSampleHistFuncs = sampleHistFuncs[i];
650 thisSampleHistFuncs.push_back(&binWidth);
651
652 if (thisSampleHistFuncs.size() == 1) {
653 // Just one function. Book it.
654 shapeList.add(*thisSampleHistFuncs.front());
655 } else {
656 // Have multiple functions. We need to multiply them.
657 std::string name = thisSampleHistFuncs.front()->GetName();
658 auto pos = name.find("Hist_alpha");
659 if (pos != std::string::npos) {
660 name = name.substr(0, pos) + "shapes";
661 } else if ( (pos = name.find("nominal")) != std::string::npos) {
662 name = name.substr(0, pos) + "shapes";
663 }
664
667 shapeList.add(*proto.function(name));
668 }
669 }
670
671 // Sum all samples
672 RooRealSumPdf tot(totName.c_str(), totName.c_str(), shapeList, coefList, true);
673 tot.specialIntegratorConfig(true)->method1D().setLabel("RooBinIntegrator") ;
674 tot.specialIntegratorConfig(true)->method2D().setLabel("RooBinIntegrator") ;
675 tot.specialIntegratorConfig(true)->methodND().setLabel("RooBinIntegrator") ;
676 tot.forceNumInt();
677
678 // for mixed generation in RooSimultaneous
679 tot.setAttribute("GenerateBinned"); // for use with RooSimultaneous::generate in mixed mode
680
681 // Enable the binned likelihood optimization
682 if(fCfg.binnedFitOptimization) {
683 tot.setAttribute("BinnedLikelihood");
684 }
685
687 }
688
689 //////////////////////////////////////////////////////////////////////////////
690
692
693 std::ofstream covFile(filename);
694
695 covFile << " ";
696 for (auto const *myargi : static_range_cast<RooRealVar *>(*params)) {
697 if (myargi->isConstant())
698 continue;
699 covFile << " & " << myargi->GetName();
700 }
701 covFile << "\\\\ \\hline \n";
702 for (auto const *myargi : static_range_cast<RooRealVar *>(*params)) {
703 if(myargi->isConstant()) continue;
704 covFile << myargi->GetName();
705 for (auto const *myargj : static_range_cast<RooRealVar *>(*params)) {
706 if(myargj->isConstant()) continue;
707 std::cout << myargi->GetName() << "," << myargj->GetName();
708 double corr = result->correlation(*myargi, *myargj);
709 covFile << " & " << std::fixed << std::setprecision(2) << corr;
710 }
711 std::cout << std::endl;
712 covFile << " \\\\\n";
713 }
714
715 covFile.close();
716 }
717
718
719 ///////////////////////////////////////////////
721
722 // check inputs (see JIRA-6890 )
723
724 if (channel.GetSamples().empty()) {
725 Error("MakeSingleChannelWorkspace",
726 "The input Channel does not contain any sample - return a nullptr");
727 return nullptr;
728 }
729
730 const TH1* channel_hist_template = channel.GetSamples().front().GetHisto();
731 if (channel_hist_template == nullptr) {
732 channel.CollectHistograms();
733 channel_hist_template = channel.GetSamples().front().GetHisto();
734 }
735 if (channel_hist_template == nullptr) {
736 std::ostringstream stream;
737 stream << "The sample " << channel.GetSamples().front().GetName()
738 << " in channel " << channel.GetName() << " does not contain a histogram. This is the channel:\n";
739 channel.Print(stream);
740 Error("MakeSingleChannelWorkspace", "%s", stream.str().c_str());
741 return nullptr;
742 }
743
744 if( ! channel.CheckHistograms() ) {
745 cxcoutFHF << "MakeSingleChannelWorkspace: Channel: " << channel.GetName()
746 << " has uninitialized histogram pointers" << std::endl;
747 throw hf_exc();
748 }
749
750
751
752 // Set these by hand inside the function
753 vector<string> systToFix = measurement.GetConstantParams();
754 bool doRatio=false;
755
756 //ES// string channel_name=summary[0].channel;
757 string channel_name = channel.GetName();
758
759 /// MB: reset observable names for each new channel.
760 fObsNameVec.clear();
761
762 /// MB: label observables x,y,z, depending on histogram dimensionality
763 /// GHL: Give it the first sample's nominal histogram as a template
764 /// since the data histogram may not be present
766
767 for ( unsigned int idx=0; idx<fObsNameVec.size(); ++idx ) {
768 fObsNameVec[idx] = "obs_" + fObsNameVec[idx] + "_" + channel_name ;
769 }
770
771 if (fObsNameVec.empty()) {
772 fObsName= "obs_" + channel_name; // set name ov observable
773 fObsNameVec.push_back( fObsName );
774 }
775
776 if (fObsNameVec.empty() || fObsNameVec.size() > 3) {
777 throw hf_exc("HistFactory is limited to 1- to 3-dimensional histograms.");
778 }
779
780 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
781 << "\tStarting to process '"
782 << channel_name << "' channel with " << fObsNameVec.size() << " observables"
783 << "\n-----------------------------------------\n" << std::endl;
784
785 //
786 // our main workspace that we are using to construct the model
787 //
788 auto protoOwner = std::make_unique<RooWorkspace>(channel_name.c_str(), (channel_name+" workspace").c_str());
790 auto proto_config = std::make_unique<ModelConfig>("ModelConfig", &proto);
791
792 // preprocess functions
793 for(auto const& func : fPreprocessFunctions){
794 cxcoutI(HistFactory) << "will preprocess this line: " << func << std::endl;
795 proto.factory(func);
796 proto.Print();
797 }
798
799 RooArgSet likelihoodTerms("likelihoodTerms");
800 RooArgSet constraintTerms("constraintTerms");
804 // All histogram functions to be multiplied in each sample
805 std::vector<std::vector<RooAbsArg*>> allSampleHistFuncs;
806 std::vector<RooProduct*> sampleScaleFactors;
807
808 std::vector<std::pair<string, string>> statNamePairs;
809 std::vector<std::pair<const TH1 *, std::unique_ptr<TH1>>> statHistPairs; // <nominal, error>
810 const std::string statFuncName = "mc_stat_" + channel_name;
811
812 string prefix;
813 string range;
814
815 /////////////////////////////
816 // shared parameters
817 // this is ratio of lumi to nominal lumi. We will include relative uncertainty in model
818 auto &lumiVar = getOrCreate<RooRealVar>(proto, "Lumi", fNomLumi, 0.0, 10 * fNomLumi);
819
820 // only include a lumiConstraint if there's a lumi uncert, otherwise just set the lumi constant
821 if(fLumiError != 0) {
822 auto &nominalLumiVar = emplace<RooRealVar>(proto, "nominalLumi", fNomLumi, 0., fNomLumi + 10. * fLumiError);
824 proto.var("Lumi")->setError(fLumiError/fNomLumi); // give initial error value
825 proto.var("nominalLumi")->setConstant();
826 proto.defineSet("globalObservables","nominalLumi");
827 //likelihoodTermNames.push_back("lumiConstraint");
828 constraintTermNames.push_back("lumiConstraint");
829 } else {
830 proto.var("Lumi")->setConstant();
831 proto.defineSet("globalObservables",RooArgSet()); // create empty set as is assumed it exists later
832 }
833 ///////////////////////////////////
834 // loop through estimates, add expectation, floating bin predictions,
835 // and terms that constrain floating to expectation via uncertainties
836 // GHL: Loop over samples instead, which doesn't contain the data
837 for (Sample& sample : channel.GetSamples()) {
838 string overallSystName = sample.GetName() + "_" + channel_name + "_epsilon";
839
840 string systSourcePrefix = "alpha_";
841
842 // constraintTermNames and totSystTermNames are vectors that are passed
843 // by reference and filled by this method
845 sample.GetOverallSysList(), constraintTermNames , totSystTermNames);
846
847 allSampleHistFuncs.emplace_back();
848 std::vector<RooAbsArg*>& sampleHistFuncs = allSampleHistFuncs.back();
849
850 // GHL: Consider passing the NormFactor list instead of the entire sample
853
854 // Create the string for the object
855 // that is added to the RooRealSumPdf
856 // for this channel
857// string syst_x_expectedPrefix = "";
858
859 // get histogram
860 //ES// TH1* nominal = it->nominal;
861 const TH1* nominal = sample.GetHisto();
862
863 // MB : HACK no option to have both non-hist variations and hist variations ?
864 // get histogram
865 // GHL: Okay, this is going to be non-trivial.
866 // We will loop over histosys's, which contain both
867 // the low hist and the high hist together.
868
869 // Logic:
870 // - If we have no HistoSys's, do part A
871 // - else, if the histo syst's don't match, return (we ignore this case)
872 // - finally, we take the syst's and apply the linear interpolation w/ constraint
873 string expPrefix = sample.GetName() + "_" + channel_name;
874 // create roorealvar observables
875 RooArgList observables = createObservables(sample.GetHisto(), proto);
878
879 if(sample.GetHistoSysList().empty()) {
880 // If no HistoSys
881 cxcoutI(HistFactory) << sample.GetName() + "_" + channel_name + " has no variation histograms " << std::endl;
882
884 } else {
885 // If there ARE HistoSys(s)
886 // name of source for variation
887 string constraintPrefix = sample.GetName() + "_" + channel_name + "_Hist_alpha";
888
889 // make list of abstract parameters that interpolate in space of variations
891
892 // next, create the constraint terms
893 for(std::size_t i = 0; i < interpParams.size(); ++i) {
894 bool isUniform = measurement.GetUniformSyst().count(sample.GetHistoSysList()[i].GetName()) > 0;
896 }
897
898 // finally, create the interpolated function
900 sample.GetHistoSysList(), constraintPrefix, observables) );
901 }
902
903 sampleHistFuncs.front()->SetTitle( (nominal && strlen(nominal->GetTitle())>0) ? nominal->GetTitle() : sample.GetName().c_str() );
904
905 ////////////////////////////////////
906 // Add StatErrors to this Channel //
907 ////////////////////////////////////
908
909 if( sample.GetStatError().GetActivate() ) {
910
911 if( fObsNameVec.size() > 3 ) {
912 cxcoutFHF << "Cannot include Stat Error for histograms of more than 3 dimensions." << std::endl;
913 throw hf_exc();
914 } else {
915
916 // If we are using StatUncertainties, we multiply this object
917 // by the ParamHistFunc and then pass that to the
918 // RooRealSumPdf by appending it's name to the list
919
920 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " to be included in Stat Error "
921 << "for channel " << channel_name
922 << std::endl;
923
924 string UncertName = sample.GetName() + "_" + channel_name + "_StatAbsolUncert";
925 std::unique_ptr<TH1> statErrorHist;
926
927 if( sample.GetStatError().GetErrorHist() == nullptr ) {
928 // Make the absolute stat error
929 cxcoutI(HistFactory) << "Making Statistical Uncertainty Hist for "
930 << " Channel: " << channel_name
931 << " Sample: " << sample.GetName()
932 << std::endl;
934 } else {
935 // clone the error histograms because in case the sample has not error hist
936 // it is created in MakeAbsolUncertainty
937 // we need later to clean statErrorHist
938 statErrorHist.reset(static_cast<TH1*>(sample.GetStatError().GetErrorHist()->Clone()));
939 // We assume the (relative) error is provided.
940 // We must turn it into an absolute error
941 // using the nominal histogram
942 cxcoutI(HistFactory) << "Using external histogram for Stat Errors for "
943 << "\tChannel: " << channel_name
944 << "\tSample: " << sample.GetName()
945 << "\tError Histogram: " << statErrorHist->GetName() << std::endl;
946 // Multiply the relative stat uncertainty by the
947 // nominal to get the overall stat uncertainty
948 statErrorHist->Multiply( nominal );
949 statErrorHist->SetName( UncertName.c_str() );
950 }
951
952 // Save the nominal and error hists
953 // for the building of constraint terms
954 statHistPairs.emplace_back(nominal, std::move(statErrorHist));
955
956 // To do the 'conservative' version, we would need to do some
957 // intervention here. We would probably need to create a different
958 // ParamHistFunc for each sample in the channel. The would nominally
959 // use the same gamma's, so we haven't increased the number of parameters
960 // However, if a bin in the 'nominal' histogram is 0, we simply need to
961 // change the parameter in that bin in the ParamHistFunc for this sample.
962 // We also need to add a constraint term.
963 // Actually, we'd probably not use the ParamHistFunc...?
964 // we could remove the dependence in this ParamHistFunc on the ith gamma
965 // and then create the poisson term: Pois(tau | n_exp)Pois(data | n_exp)
966
967
968 // Next, try to get the common ParamHistFunc (it may have been
969 // created by another sample in this channel)
970 // or create it if it doesn't yet exist:
971 RooAbsReal* paramHist = dynamic_cast<ParamHistFunc*>(proto.function(statFuncName) );
972 if( paramHist == nullptr ) {
973
974 // Get a RooArgSet of the observables:
975 // Names in the list fObsNameVec:
977 std::vector<std::string>::iterator itr = fObsNameVec.begin();
978 for (int idx=0; itr!=fObsNameVec.end(); ++itr, ++idx ) {
979 theObservables.add( *proto.var(*itr) );
980 }
981
982 // Create the list of terms to
983 // control the bin heights:
984 std::string ParamSetPrefix = "gamma_stat_" + channel_name;
989
992
994
995 paramHist = proto.function( statFuncName);
996 }
997
998 // apply stat function to sample
999 sampleHistFuncs.push_back(paramHist);
1000 }
1001 } // END: if DoMcStat
1002
1003
1004 ///////////////////////////////////////////
1005 // Create a ShapeFactor for this channel //
1006 ///////////////////////////////////////////
1007
1008 if( !sample.GetShapeFactorList().empty() ) {
1009
1010 if( fObsNameVec.size() > 3 ) {
1011 cxcoutFHF << "Cannot include Stat Error for histograms of more than 3 dimensions." << std::endl;
1012 throw hf_exc();
1013 } else {
1014
1015 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " in channel: " << channel_name
1016 << " to be include a ShapeFactor."
1017 << std::endl;
1018
1019 for(ShapeFactor& shapeFactor : sample.GetShapeFactorList()) {
1020
1021 std::string funcName = channel_name + "_" + shapeFactor.GetName() + "_shapeFactor";
1022 RooAbsArg *paramHist = proto.function(funcName);
1023 if( paramHist == nullptr ) {
1024
1026 for(std::string const& varName : fObsNameVec) {
1027 theObservables.add( *proto.var(varName) );
1028 }
1029
1030 // Create the Parameters
1031 std::string funcParams = "gamma_" + shapeFactor.GetName();
1032
1033 // GHL: Again, we are putting hard ranges on the gamma's
1034 // We should change this to range from 0 to /inf
1036 funcParams,
1038
1039 // Create the Function
1042
1043 // Set an initial shape, if requested
1044 if( shapeFactor.GetInitialShape() != nullptr ) {
1045 TH1* initialShape = static_cast<TH1*>(shapeFactor.GetInitialShape()->Clone());
1046 cxcoutI(HistFactory) << "Setting Shape Factor: " << shapeFactor.GetName()
1047 << " to have initial shape from hist: "
1048 << initialShape->GetName()
1049 << std::endl;
1050 shapeFactorFunc.setShape( initialShape );
1051 }
1052
1053 // Set the variables constant, if requested
1054 if( shapeFactor.IsConstant() ) {
1055 cxcoutI(HistFactory) << "Setting Shape Factor: " << shapeFactor.GetName()
1056 << " to be constant" << std::endl;
1057 shapeFactorFunc.setConstant(true);
1058 }
1059
1061 paramHist = proto.function(funcName);
1062
1063 } // End: Create ShapeFactor ParamHistFunc
1064
1065 sampleHistFuncs.push_back(paramHist);
1066 } // End loop over ShapeFactor Systematics
1067 }
1068 } // End: if ShapeFactorName!=""
1069
1070
1071 ////////////////////////////////////////
1072 // Create a ShapeSys for this channel //
1073 ////////////////////////////////////////
1074
1075 if( !sample.GetShapeSysList().empty() ) {
1076
1077 if( fObsNameVec.size() > 3 ) {
1078 cxcoutFHF << "Cannot include Stat Error for histograms of more than 3 dimensions.\n";
1079 throw hf_exc();
1080 }
1081
1082 // List of ShapeSys ParamHistFuncs
1083 std::vector<string> ShapeSysNames;
1084
1085 for(RooStats::HistFactory::ShapeSys& shapeSys : sample.GetShapeSysList()) {
1086
1087 // Create the ParamHistFunc's
1088 // Create their constraint terms and add them
1089 // to the list of constraint terms
1090
1091 // Create a single RooProduct over all of these
1092 // paramHistFunc's
1093
1094 // Send the name of that product to the RooRealSumPdf
1095
1096 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " in channel: " << channel_name
1097 << " to include a ShapeSys." << std::endl;
1098
1099 std::string funcName = channel_name + "_" + shapeSys.GetName() + "_ShapeSys";
1100 ShapeSysNames.push_back( funcName );
1101 auto paramHist = static_cast<ParamHistFunc*>(proto.function(funcName));
1102 if( paramHist == nullptr ) {
1103
1104 //std::string funcParams = "gamma_" + it->shapeFactorName;
1105 //paramHist = CreateParamHistFunc( proto, fObsNameVec, funcParams, funcName );
1106
1108 for(std::string const& varName : fObsNameVec) {
1109 theObservables.add( *proto.var(varName) );
1110 }
1111
1112 // Create the Parameters
1113 std::string funcParams = "gamma_" + shapeSys.GetName();
1115 funcParams,
1117
1118 // Create the Function
1121
1123 paramHist = static_cast<ParamHistFunc*>(proto.function(funcName));
1124
1125 } // End: Create ShapeFactor ParamHistFunc
1126
1127 // Create the constraint terms and add
1128 // them to the workspace (proto)
1129 // as well as the list of constraint terms (constraintTermNames)
1130
1131 // The syst should be a fractional error
1132 const TH1* shapeErrorHist = shapeSys.GetErrorHist();
1133
1134 // Constraint::Type shapeConstraintType = Constraint::Gaussian;
1135 Constraint::Type systype = shapeSys.GetConstraintType();
1138 }
1139 if( systype == Constraint::Poisson ) {
1141 }
1142
1144 paramHist->paramList(), histToVector(*shapeErrorHist),
1146 systype);
1147 for (auto const& term : shapeConstraintsInfo.constraints) {
1149 constraintTermNames.emplace_back(term->GetName());
1150 }
1151 // Add the "observed" value to the list of global observables:
1152 RooArgSet *globalSet = const_cast<RooArgSet *>(proto.set("globalObservables"));
1153 for (RooAbsArg * glob : shapeConstraintsInfo.globalObservables) {
1154 globalSet->add(*proto.var(glob->GetName()));
1155 }
1156
1157
1158 } // End: Loop over ShapeSys vector in this EstimateSummary
1159
1160 // Now that we have the list of ShapeSys ParamHistFunc names,
1161 // we create the total RooProduct
1162 // we multiply the expected function
1163
1164 for(std::string const& name : ShapeSysNames) {
1165 sampleHistFuncs.push_back(proto.function(name));
1166 }
1167
1168 } // End: !GetShapeSysList.empty()
1169
1170
1171 // GHL: This was pretty confusing before,
1172 // hopefully using the measurement directly
1173 // will improve it
1174 RooAbsArg *lumi = proto.arg("Lumi");
1175 if( !sample.GetNormalizeByTheory() ) {
1176 if (!lumi) {
1177 lumi = &emplace<RooRealVar>(proto, "Lumi", measurement.GetLumi());
1178 } else {
1179 static_cast<RooAbsRealLValue*>(lumi)->setVal(measurement.GetLumi());
1180 }
1181 }
1182 assert(lumi);
1183 normFactors->addTerm(lumi);
1184
1185 // Append the name of the "node"
1186 // that is to be summed with the
1187 // RooRealSumPdf
1189 auto normFactorsInWS = dynamic_cast<RooProduct*>(proto.arg(normFactors->GetName()));
1191
1193 } // END: Loop over EstimateSummaries
1194
1195 // If a non-zero number of samples call for
1196 // Stat Uncertainties, create the statFactor functions
1197 if(!statHistPairs.empty()) {
1198
1199 // Create the histogram of (binwise)
1200 // stat uncertainties:
1201 std::unique_ptr<TH1> fracStatError(
1202 MakeScaledUncertaintyHist(channel_name + "_StatUncert" + "_RelErr", statHistPairs));
1203 if( fracStatError == nullptr ) {
1204 cxcoutFHF << "Error: Failed to make ScaledUncertaintyHist for: " << channel_name + "_StatUncert" + "_RelErr\n";
1205 throw hf_exc();
1206 }
1207
1208 // Using this TH1* of fractinal stat errors,
1209 // create a set of constraint terms:
1210 auto chanStatUncertFunc = static_cast<ParamHistFunc*>(proto.function( statFuncName ));
1211 cxcoutI(HistFactory) << "About to create Constraint Terms from: "
1212 << chanStatUncertFunc->GetName()
1213 << " params: " << chanStatUncertFunc->paramList()
1214 << std::endl;
1215
1216 // Get the constraint type and the
1217 // rel error threshold from the (last)
1218 // EstimateSummary looped over (but all
1219 // should be the same)
1220
1221 // Get the type of StatError constraint from the channel
1224 cxcoutI(HistFactory) << "Using Gaussian StatErrors in channel: " << channel.GetName() << std::endl;
1225 }
1227 cxcoutI(HistFactory) << "Using Poisson StatErrors in channel: " << channel.GetName() << std::endl;
1228 }
1229
1235 for (auto const& term : statConstraintsInfo.constraints) {
1237 constraintTermNames.emplace_back(term->GetName());
1238 }
1239 // Add the "observed" value to the list of global observables:
1240 RooArgSet *globalSet = const_cast<RooArgSet *>(proto.set("globalObservables"));
1241 for (RooAbsArg * glob : statConstraintsInfo.globalObservables) {
1242 globalSet->add(*proto.var(glob->GetName()));
1243 }
1244
1245 } // END: Loop over stat Hist Pairs
1246
1247
1248 ///////////////////////////////////
1249 // for ith bin calculate totN_i = lumi * sum_j expected_j * syst_j
1252 likelihoodTermNames.push_back(channel_name+"_model");
1253
1254 //////////////////////////////////////
1255 // fix specified parameters
1256 for(unsigned int i=0; i<systToFix.size(); ++i){
1257 RooRealVar* temp = proto.var(systToFix.at(i));
1258 if(!temp) {
1259 cxcoutW(HistFactory) << "could not find variable " << systToFix.at(i)
1260 << " could not set it to constant" << std::endl;
1261 } else {
1262 // set the parameter constant
1263 temp->setConstant();
1264 }
1265 }
1266
1267 //////////////////////////////////////
1268 // final proto model
1269 for(unsigned int i=0; i<constraintTermNames.size(); ++i){
1271 if( proto_arg==nullptr ) {
1272 cxcoutFHF << "Error: Cannot find arg set: " << constraintTermNames.at(i)
1273 << " in workspace: " << proto.GetName() << std::endl;
1274 throw hf_exc();
1275 }
1276 constraintTerms.add( *proto_arg );
1277 // constraintTerms.add(* proto_arg(proto.arg(constraintTermNames[i].c_str())) );
1278 }
1279 for(unsigned int i=0; i<likelihoodTermNames.size(); ++i){
1281 if( proto_arg==nullptr ) {
1282 cxcoutFHF << "Error: Cannot find arg set: " << likelihoodTermNames.at(i)
1283 << " in workspace: " << proto.GetName() << std::endl;
1284 throw hf_exc();
1285 }
1286 likelihoodTerms.add( *proto_arg );
1287 }
1288 proto.defineSet("constraintTerms",constraintTerms);
1289 proto.defineSet("likelihoodTerms",likelihoodTerms);
1290
1291 // list of observables
1292 RooArgList observables;
1293 std::string observablesStr;
1294
1295 for(std::string const& name : fObsNameVec) {
1296 observables.add( *proto.var(name) );
1297 if (!observablesStr.empty()) { observablesStr += ","; }
1299 }
1300
1301 // We create two sets, one for backwards compatibility
1302 // The other to make a consistent naming convention
1303 // between individual channels and the combined workspace
1304 proto.defineSet("observables", observablesStr.c_str());
1305 proto.defineSet("observablesSet", observablesStr.c_str());
1306
1307 // Create the ParamHistFunc
1308 // after observables have been made
1309 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1310 << "\timport model into workspace"
1311 << "\n-----------------------------------------\n" << std::endl;
1312
1313 auto model = std::make_unique<RooProdPdf>(
1314 ("model_" + channel_name).c_str(), // MB : have changed this into conditional pdf. Much faster for toys!
1315 "product of Poissons across bins for a single channel", constraintTerms,
1316 RooFit::Conditional(likelihoodTerms, observables));
1317 // can give channel a title by setting title of corresponding data histogram
1318 if (channel.GetData().GetHisto() && strlen(channel.GetData().GetHisto()->GetTitle())>0) {
1319 model->SetTitle(channel.GetData().GetHisto()->GetTitle());
1320 }
1321 proto.import(*model,RooFit::RecycleConflictNodes());
1322
1323 proto_config->SetPdf(*model);
1324 proto_config->SetObservables(observables);
1325 proto_config->SetGlobalObservables(*proto.set("globalObservables"));
1326 // proto.writeToFile(("results/model_"+channel+".root").c_str());
1327 // fill out nuisance parameters in model config
1328 // proto_config->GuessObsAndNuisance(*proto.data("asimovData"));
1329 proto.import(*proto_config,proto_config->GetName());
1330 proto.importClassCode();
1331
1332 ///////////////////////////
1333 // make data sets
1334 // THis works and is natural, but the memory size of the simultaneous dataset grows exponentially with channels
1335 // New Asimov Generation: Use the code in the Asymptotic calculator
1336 // Need to get the ModelConfig...
1337 int asymcalcPrintLevel = 0;
1341 if (fCfg.createPerRegionWorkspaces) {
1342 // Creating the per-channel asimov dataset is only meaningful if we
1343 // actually create the files with the stored per-channel workspaces.
1344 // Otherwise, we just spend time calculating something that gets thrown
1345 // away anyway (for the combined workspace, we'll create a new Asimov).
1346 std::unique_ptr<RooAbsData> asimov_dataset(AsymptoticCalculator::GenerateAsimovData(*model, observables));
1347 proto.import(*asimov_dataset, RooFit::Rename("asimovData"));
1348 }
1349
1350 // GHL: Determine to use data if the hist isn't 'nullptr'
1351 if(TH1 const* mnominal = channel.GetData().GetHisto()) {
1352 // This works and is natural, but the memory size of the simultaneous
1353 // dataset grows exponentially with channels.
1354 std::unique_ptr<RooDataSet> dataset;
1355 if(!fCfg.storeDataError){
1356 dataset = std::make_unique<RooDataSet>("obsData","",*proto.set("observables"), RooFit::WeightVar("weightVar"));
1357 } else {
1358 const char* weightErrName="weightErr";
1359 proto.factory(TString::Format("%s[0,-1e10,1e10]",weightErrName));
1360 dataset = std::make_unique<RooDataSet>("obsData","",*proto.set("observables"), RooFit::WeightVar("weightVar"), RooFit::StoreError(*proto.var(weightErrName)));
1361 }
1363 proto.import(*dataset);
1364 } // End: Has non-null 'data' entry
1365
1366
1367 for(auto const& data : channel.GetAdditionalData()) {
1368 if(data.GetName().empty()) {
1369 cxcoutFHF << "Error: Additional Data histogram for channel: " << channel.GetName()
1370 << " has no name! The name always needs to be set for additional datasets, "
1371 << "either via the \"Name\" tag in the XML or via RooStats::HistFactory::Data::SetName().\n";
1372 throw hf_exc();
1373 }
1374 std::string const& dataName = data.GetName();
1375 TH1 const* mnominal = data.GetHisto();
1376 if( !mnominal ) {
1377 cxcoutFHF << "Error: Additional Data histogram for channel: " << channel.GetName()
1378 << " with name: " << dataName << " is nullptr\n";
1379 throw hf_exc();
1380 }
1381
1382 // THis works and is natural, but the memory size of the simultaneous dataset grows exponentially with channels
1383 RooDataSet dataset{dataName, "", *proto.set("observables"), RooFit::WeightVar("weightVar")};
1385 proto.import(dataset);
1386
1387 }
1388
1389 if (RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO)) {
1390 proto.Print();
1391 }
1392
1393 return protoOwner;
1394 }
1395
1396
1398 TH1 const& mnominal,
1400 std::vector<std::string> const& obsNameVec) {
1401
1402 // Take a RooDataSet and fill it with the entries
1403 // from a TH1*, using the observable names to
1404 // determine the columns
1405
1406 if (obsNameVec.empty() ) {
1407 Error("ConfigureHistFactoryDataset","Invalid input - return");
1408 return;
1409 }
1410
1411 TAxis const* ax = mnominal.GetXaxis();
1412 TAxis const* ay = mnominal.GetYaxis();
1413 TAxis const* az = mnominal.GetZaxis();
1414
1415 // check whether the dataset needs the errors stored explicitly
1416 const bool storeWeightErr = obsDataUnbinned.weightVar()->getAttribute("StoreError");
1417
1418 for (int i=1; i<=ax->GetNbins(); ++i) { // 1 or more dimension
1419
1420 double xval = ax->GetBinCenter(i);
1421 proto.var( obsNameVec[0] )->setVal( xval );
1422
1423 if(obsNameVec.size()==1) {
1424 double fval = mnominal.GetBinContent(i);
1425 double ferr = storeWeightErr ? mnominal.GetBinError(i) : 0.;
1426 obsDataUnbinned.add( *proto.set("observables"), fval, ferr );
1427 } else { // 2 or more dimensions
1428
1429 for(int j=1; j<=ay->GetNbins(); ++j) {
1430 double yval = ay->GetBinCenter(j);
1431 proto.var( obsNameVec[1] )->setVal( yval );
1432
1433 if(obsNameVec.size()==2) {
1434 double fval = mnominal.GetBinContent(i,j);
1435 double ferr = storeWeightErr ? mnominal.GetBinError(i, j) : 0.;
1436 obsDataUnbinned.add( *proto.set("observables"), fval, ferr );
1437 } else { // 3 dimensions
1438
1439 for(int k=1; k<=az->GetNbins(); ++k) {
1440 double zval = az->GetBinCenter(k);
1441 proto.var( obsNameVec[2] )->setVal( zval );
1442 double fval = mnominal.GetBinContent(i,j,k);
1443 double ferr = storeWeightErr ? mnominal.GetBinError(i, j, k) : 0.;
1444 obsDataUnbinned.add( *proto.set("observables"), fval, ferr );
1445 }
1446 }
1447 }
1448 }
1449 }
1450 }
1451
1453 {
1454 fObsNameVec = std::vector<string>{"x", "y", "z"};
1455 fObsNameVec.resize(hist->GetDimension());
1456 }
1457
1458
1461 std::vector<std::unique_ptr<RooWorkspace>> &chs)
1462 {
1464
1465 // check first the inputs (see JIRA-6890)
1466 if (ch_names.empty() || chs.empty() ) {
1467 Error("MakeCombinedModel","Input vectors are empty - return a nullptr");
1468 return nullptr;
1469 }
1470 if (chs.size() < ch_names.size() ) {
1471 Error("MakeCombinedModel","Input vector of workspace has an invalid size - return a nullptr");
1472 return nullptr;
1473 }
1474 std::set<std::string> ch_names_set{ch_names.begin(), ch_names.end()};
1475 if (ch_names.size() != ch_names_set.size()) {
1476 Error("MakeCombinedModel", "Input vector of channel names has duplicate names - return a nullptr");
1477 return nullptr;
1478 }
1479
1480 //
1481 /// These things were used for debugging. Maybe useful in the future
1482 //
1483
1484 std::map<string, RooAbsPdf *> pdfMap;
1486
1488 for (unsigned int i = 0; i < ch_names.size(); ++i) {
1489 obsList.add(*static_cast<ModelConfig *>(chs[i]->obj("ModelConfig"))->GetObservables());
1490 }
1491 cxcoutI(HistFactory) <<"full list of observables:\n" << obsList << std::endl;
1492
1494 std::map<std::string, int> channelMap;
1495 for(unsigned int i = 0; i< ch_names.size(); ++i){
1496 string channel_name=ch_names[i];
1497 if (i == 0 && isdigit(channel_name[0])) {
1498 throw std::invalid_argument("The first channel name for HistFactory cannot start with a digit. Got " + channel_name);
1499 }
1500 if (channel_name.find(',') != std::string::npos) {
1501 throw std::invalid_argument("Channel names for HistFactory cannot contain ','. Got " + channel_name);
1502 }
1503
1505 RooWorkspace * ch=chs[i].get();
1506
1507 RooAbsPdf* model = ch->pdf("model_"+channel_name);
1508 if (!model) {
1509 cxcoutFHF << "failed to find model for channel\n";
1510 throw hf_exc();
1511 }
1512 models.push_back(model);
1513 auto &modelConfig = *static_cast<ModelConfig *>(chs[i]->obj("ModelConfig"));
1514 // silent because observables might exist in other channel:
1515 globalObs.add(*modelConfig.GetGlobalObservables(), /*silent=*/true);
1516
1517 // constrainedParams->add( * ch->set("constrainedParams") );
1518 pdfMap[channel_name]=model;
1519 }
1520
1521 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1522 << "\tEntering combination"
1523 << "\n-----------------------------------------\n" << std::endl;
1524 auto combined = std::make_unique<RooWorkspace>("combined");
1525
1526
1528
1529 auto simPdf= std::make_unique<RooSimultaneous>("simPdf","",pdfMap, channelCat);
1530 auto combined_config = std::make_unique<ModelConfig>("ModelConfig", combined.get());
1531 combined_config->SetWorkspace(*combined);
1532 // combined_config->SetNuisanceParameters(*constrainedParams);
1533
1534 combined->import(globalObs);
1535 combined->defineSet("globalObservables",globalObs);
1536 combined_config->SetGlobalObservables(*combined->set("globalObservables"));
1537
1538 combined->defineSet("observables",{obsList, channelCat}, /*importMissing=*/true);
1539 combined_config->SetObservables(*combined->set("observables"));
1540
1541
1542 // Now merge the observable datasets across the channels
1543 for(RooAbsData * data : chs[0]->allData()) {
1544 // We are excluding the Asimov data, because it needs to be regenerated
1545 // later after the parameter values are set.
1546 if(std::string("asimovData") == data->GetName()) {
1547 continue;
1548 }
1549 // Loop through channels, get their individual datasets,
1550 // and add them to the combined dataset
1551 std::map<std::string, RooAbsData*> dataMap;
1552 for(unsigned int i = 0; i < ch_names.size(); ++i){
1553 dataMap[ch_names[i]] = chs[i]->data(data->GetName());
1554 }
1555 combined->import(RooDataSet{data->GetName(), "", obsList, RooFit::Index(channelCat),
1556 RooFit::WeightVar("weightVar"), RooFit::Import(dataMap)});
1557 }
1558
1559
1561 combined->Print();
1562
1563 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1564 << "\tImporting combined model"
1565 << "\n-----------------------------------------\n" << std::endl;
1567
1568 for(auto const& param_itr : fParamValues) {
1569 // make sure they are fixed
1570 std::string paramName = param_itr.first;
1571 double paramVal = param_itr.second;
1572
1573 if(RooRealVar* temp = combined->var( paramName )) {
1574 temp->setVal( paramVal );
1575 cxcoutI(HistFactory) <<"setting " << paramName << " to the value: " << paramVal << std::endl;
1576 } else
1577 cxcoutE(HistFactory) << "could not find variable " << paramName << " could not set its value" << std::endl;
1578 }
1579
1580
1581 for(unsigned int i=0; i<fSystToFix.size(); ++i){
1582 // make sure they are fixed
1583 if(RooRealVar* temp = combined->var(fSystToFix[i])) {
1584 temp->setConstant();
1585 cxcoutI(HistFactory) <<"setting " << fSystToFix.at(i) << " constant" << std::endl;
1586 } else
1587 cxcoutE(HistFactory) << "could not find variable " << fSystToFix.at(i) << " could not set it to constant" << std::endl;
1588 }
1589
1590 ///
1591 /// writing out the model in graphViz
1592 ///
1593 // RooAbsPdf* customized=combined->pdf("simPdf");
1594 //combined_config->SetPdf(*customized);
1595 combined_config->SetPdf(*simPdf);
1596 // combined_config->GuessObsAndNuisance(*simData);
1597 // customized->graphVizTree(("results/"+fResultsPrefixStr.str()+"_simul.dot").c_str());
1598 combined->import(*combined_config,combined_config->GetName());
1599 combined->importClassCode();
1600 // combined->writeToFile("results/model_combined.root");
1601
1602
1603 ////////////////////////////////////////////
1604 // Make toy simultaneous dataset
1605 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1606 << "\tcreate toy data"
1607 << "\n-----------------------------------------\n" << std::endl;
1608
1609
1610 // now with weighted datasets
1611 // First Asimov
1612
1613 // Create Asimov data for the combined dataset
1615 *combined->pdf("simPdf"),
1616 obsList)};
1617 if( asimov_combined ) {
1618 combined->import( *asimov_combined, RooFit::Rename("asimovData"));
1619 }
1620 else {
1621 cxcoutFHF << "Error: Failed to create combined asimov dataset\n";
1622 throw hf_exc();
1623 }
1624
1625 return RooFit::makeOwningPtr(std::move(combined));
1626 }
1627
1628
1630
1631 // Take a nominal TH1* and create
1632 // a TH1 representing the binwise
1633 // errors (taken from the nominal TH1)
1634
1635 auto ErrorHist = static_cast<TH1*>(Nominal->Clone( Name.c_str() ));
1636 ErrorHist->Reset();
1637
1638 int numBins = Nominal->GetNbinsX()*Nominal->GetNbinsY()*Nominal->GetNbinsZ();
1639 int binNumber = 0;
1640
1641 // Loop over bins
1642 for( int i_bin = 0; i_bin < numBins; ++i_bin) {
1643
1644 binNumber++;
1645 // Ignore underflow / overflow
1646 while( Nominal->IsBinUnderflow(binNumber) || Nominal->IsBinOverflow(binNumber) ){
1647 binNumber++;
1648 }
1649
1650 double histError = Nominal->GetBinError( binNumber );
1651
1652 // Check that histError != NAN
1653 if( histError != histError ) {
1654 cxcoutFHF << "Warning: In histogram " << Nominal->GetName() << " bin error for bin " << i_bin
1655 << " is NAN. Not using Error!!!\n";
1656 throw hf_exc();
1657 // histError = sqrt( histContent );
1658 // histError = 0;
1659 }
1660
1661 // Check that histError ! < 0
1662 if( histError < 0 ) {
1663 cxcoutWHF << "Warning: In histogram " << Nominal->GetName() << " bin error for bin " << binNumber
1664 << " is < 0. Setting Error to 0" << std::endl;
1665 // histError = sqrt( histContent );
1666 histError = 0;
1667 }
1668
1669 ErrorHist->SetBinContent( binNumber, histError );
1670
1671 }
1672
1673 return ErrorHist;
1674
1675 }
1676
1677 // Take a list of < nominal, absolError > TH1* pairs
1678 // and construct a single histogram representing the
1679 // total fractional error as:
1680
1681 // UncertInQuad(bin i) = Sum: absolUncert*absolUncert
1682 // Total(bin i) = Sum: Value
1683 //
1684 // TotalFracError(bin i) = Sqrt( UncertInQuad(i) ) / TotalBin(i)
1685 std::unique_ptr<TH1> HistoToWorkspaceFactoryFast::MakeScaledUncertaintyHist( const std::string& Name, std::vector< std::pair<const TH1*, std::unique_ptr<TH1>> > const& HistVec ) const {
1686
1687
1688 unsigned int numHists = HistVec.size();
1689
1690 if( numHists == 0 ) {
1691 cxcoutE(HistFactory) << "Warning: Empty Hist Vector, cannot create total uncertainty" << std::endl;
1692 return nullptr;
1693 }
1694
1695 const TH1* HistTemplate = HistVec.at(0).first;
1696 int numBins = HistTemplate->GetNbinsX()*HistTemplate->GetNbinsY()*HistTemplate->GetNbinsZ();
1697
1698 // Check that all histograms
1699 // have the same bins
1700 for( unsigned int i = 0; i < HistVec.size(); ++i ) {
1701
1702 const TH1* nominal = HistVec.at(i).first;
1703 const TH1* error = HistVec.at(i).second.get();
1704
1705 if( nominal->GetNbinsX()*nominal->GetNbinsY()*nominal->GetNbinsZ() != numBins ) {
1706 cxcoutE(HistFactory) << "Error: Provided hists have unequal bins" << std::endl;
1707 return nullptr;
1708 }
1709 if( error->GetNbinsX()*error->GetNbinsY()*error->GetNbinsZ() != numBins ) {
1710 cxcoutE(HistFactory) << "Error: Provided hists have unequal bins" << std::endl;
1711 return nullptr;
1712 }
1713 }
1714
1715 std::vector<double> TotalBinContent( numBins, 0.0);
1716 std::vector<double> HistErrorsSqr( numBins, 0.0);
1717
1718 int binNumber = 0;
1719
1720 // Loop over bins
1721 for( int i_bins = 0; i_bins < numBins; ++i_bins) {
1722
1723 binNumber++;
1724 while( HistTemplate->IsBinUnderflow(binNumber) || HistTemplate->IsBinOverflow(binNumber) ){
1725 binNumber++;
1726 }
1727
1728 for( unsigned int i_hist = 0; i_hist < numHists; ++i_hist ) {
1729
1730 const TH1* nominal = HistVec.at(i_hist).first;
1731 const TH1* error = HistVec.at(i_hist).second.get();
1732
1733 //int binNumber = i_bins + 1;
1734
1735 double histValue = nominal->GetBinContent( binNumber );
1736 double histError = error->GetBinContent( binNumber );
1737
1738 if( histError != histError ) {
1739 cxcoutFHF << "In histogram " << error->GetName() << " bin error for bin " << binNumber
1740 << " is NAN. Not using error!!";
1741 throw hf_exc();
1742 }
1743
1745 HistErrorsSqr.at(i_bins) += histError*histError; // Add in quadrature
1746
1747 }
1748 }
1749
1750 binNumber = 0;
1751
1752 // Creat the output histogram
1753 TH1* ErrorHist = static_cast<TH1*>(HistTemplate->Clone( Name.c_str() ));
1754 ErrorHist->Reset();
1755
1756 // Fill the output histogram
1757 for( int i = 0; i < numBins; ++i) {
1758
1759 // int binNumber = i + 1;
1760 binNumber++;
1761 while( ErrorHist->IsBinUnderflow(binNumber) || ErrorHist->IsBinOverflow(binNumber) ){
1762 binNumber++;
1763 }
1764
1765 double ErrorsSqr = HistErrorsSqr.at(i);
1766 double TotalVal = TotalBinContent.at(i);
1767
1768 if( TotalVal <= 0 ) {
1769 cxcoutW(HistFactory) << "Warning: Sum of histograms for bin: " << binNumber
1770 << " is <= 0. Setting error to 0"
1771 << std::endl;
1772
1773 ErrorHist->SetBinContent( binNumber, 0.0 );
1774 continue;
1775 }
1776
1777 double RelativeError = sqrt(ErrorsSqr) / TotalVal;
1778
1779 // If we otherwise get a NAN
1780 // it's an error
1781 if( RelativeError != RelativeError ) {
1782 cxcoutE(HistFactory) << "Error: bin " << i << " error is NAN\n"
1783 << " HistErrorsSqr: " << ErrorsSqr
1784 << " TotalVal: " << TotalVal;
1785 throw hf_exc();
1786 }
1787
1788 // 0th entry in vector is
1789 // the 1st bin in TH1
1790 // (we ignore underflow)
1791
1792 // Error and bin content are interchanged because for some reason, the other functions
1793 // use the bin content to convey the error ...
1794 ErrorHist->SetBinError(binNumber, TotalVal);
1795 ErrorHist->SetBinContent(binNumber, RelativeError);
1796
1797 cxcoutI(HistFactory) << "Making Total Uncertainty for bin " << binNumber
1798 << " Error = " << sqrt(ErrorsSqr)
1799 << " CentralVal = " << TotalVal
1800 << " RelativeError = " << RelativeError << "\n";
1801
1802 }
1803
1804 return std::unique_ptr<TH1>(ErrorHist);
1805}
1806
1807} // namespace RooStats::HistFactory
#define cxcoutPHF
#define cxcoutFHF
#define cxcoutIHF
#define cxcoutWHF
std::vector< double > histToVector(TH1 const &hist)
constexpr double alphaHigh
constexpr double alphaLow
#define cxcoutI(a)
#define cxcoutW(a)
#define cxcoutF(a)
#define cxcoutE(a)
#define cxcoutP(a)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
char name[80]
Definition TGX11.cxx:110
const char * proto
Definition civetweb.c:18822
A class which maps the current values of a RooRealVar (or a set of RooRealVars) to one of a number of...
static RooArgList createParamSet(RooWorkspace &w, const std::string &, const RooArgList &Vars)
Create the list of RooRealVar parameters which represent the height of the histogram bins.
The PiecewiseInterpolation is a class that can morph distributions into each other,...
const_iterator begin() const
const_iterator end() const
Common abstract base class for objects that represent a value and a "shape" in RooFit.
Definition RooAbsArg.h:76
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
Storage_t::size_type size() const
Abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:57
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:32
Abstract base class for objects that represent a real value that may appear on the left hand side of ...
void setConstant(bool value=true)
Abstract base class for objects that represent a real value and implements functionality common to al...
Definition RooAbsReal.h:63
Calculates the sum of a set of RooAbsReal terms, or when constructed with two sets,...
Definition RooAddition.h:27
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Implements a RooAbsBinning in terms of an array of boundary values, posing no constraints on the choi...
Definition RooBinning.h:27
Object to represent discrete states.
Definition RooCategory.h:28
Container class to hold N-dimensional binned data.
Definition RooDataHist.h:40
Container class to hold unbinned data.
Definition RooDataSet.h:32
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
A RooFormulaVar is a generic implementation of a real-valued object, which takes a RooArgList of serv...
Implementation of the Gamma PDF for RooFit/RooStats.
Definition RooGamma.h:20
Switches the message service to a different level while the instance is alive.
Definition RooHelpers.h:37
A real-valued function sampled from a multidimensional histogram.
Definition RooHistFunc.h:31
static RooMsgService & instance()
Return reference to singleton instance.
A RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficients.
Definition RooPolyVar.h:25
Represents the product of a given set of RooAbsReal objects.
Definition RooProduct.h:29
Implements a PDF constructed from a sum of functions:
Variable that can be changed from the outside.
Definition RooRealVar.h:37
void setBinning(const RooAbsBinning &binning, const char *name=nullptr)
Add given binning under name 'name' with this variable.
void setBins(Int_t nBins, const char *name=nullptr)
Create a uniform binning under name 'name' for this variable.
static void SetPrintLevel(int level)
set print level (static function)
static RooAbsData * GenerateAsimovData(const RooAbsPdf &pdf, const RooArgSet &observables)
generate the asimov data for the observables (not the global ones) need to deal with the case of a si...
TODO Here, we are missing some documentation.
void ConfigureWorkspace(RooWorkspace *)
This class encapsulates all information for the statistical interpretation of one experiment.
std::vector< RooStats::HistFactory::Data > & GetAdditionalData()
retrieve vector of additional data objects
void Print(std::ostream &=std::cout)
HistFactory::StatErrorConfig & GetStatErrorConfig()
get information about threshold for statistical uncertainties and constraint term
RooStats::HistFactory::Data & GetData()
get data object
std::vector< RooStats::HistFactory::Sample > & GetSamples()
get vector of samples for this channel
std::string GetName() const
get name of channel
This class provides helper functions for creating likelihood models from histograms.
std::unique_ptr< RooProduct > CreateNormFactor(RooWorkspace &proto, std::string &channel, std::string &sigmaEpsilon, Sample &sample, bool doRatio)
std::unique_ptr< RooWorkspace > MakeSingleChannelWorkspace(Measurement &measurement, Channel &channel)
void MakeTotalExpected(RooWorkspace &proto, const std::string &totName, const std::vector< RooProduct * > &sampleScaleFactors, std::vector< std::vector< RooAbsArg * > > &sampleHistFuncs) const
std::unique_ptr< TH1 > MakeScaledUncertaintyHist(const std::string &Name, std::vector< std::pair< const TH1 *, std::unique_ptr< TH1 > > > const &HistVec) const
RooHistFunc * MakeExpectedHistFunc(const TH1 *hist, RooWorkspace &proto, std::string prefix, const RooArgList &observables) const
Create the nominal hist function from hist, and register it in the workspace.
void SetFunctionsToPreprocess(std::vector< std::string > lines)
RooFit::OwningPtr< RooWorkspace > MakeSingleChannelModel(Measurement &measurement, Channel &channel)
RooFit::OwningPtr< RooWorkspace > MakeCombinedModel(std::vector< std::string >, std::vector< std::unique_ptr< RooWorkspace > > &)
TH1 * MakeAbsolUncertaintyHist(const std::string &Name, const TH1 *Hist)
static void ConfigureWorkspaceForMeasurement(const std::string &ModelName, RooWorkspace *ws_single, Measurement &measurement)
void AddConstraintTerms(RooWorkspace &proto, Measurement &measurement, std::string prefix, std::string interpName, std::vector< OverallSys > &systList, std::vector< std::string > &likelihoodTermNames, std::vector< std::string > &totSystTermNames)
void ConfigureHistFactoryDataset(RooDataSet &obsData, TH1 const &nominal, RooWorkspace &proto, std::vector< std::string > const &obsNameVec)
static void PrintCovarianceMatrix(RooFitResult *result, RooArgSet *params, std::string filename)
RooArgList createObservables(const TH1 *hist, RooWorkspace &proto) const
Create observables of type RooRealVar. Creates 1 to 3 observables, depending on the type of the histo...
The RooStats::HistFactory::Measurement class can be used to construct a model by combining multiple R...
Configuration for an un- constrained overall systematic to scale sample normalisations.
Definition Measurement.h:69
Configuration for a constrained overall systematic to scale sample normalisations.
Definition Measurement.h:45
*Un*constrained bin-by-bin variation of affected histogram.
Constrained bin-by-bin variation of affected histogram.
Constraint::Type GetConstraintType() const
< A class that holds configuration information for a model using a workspace as a store
Definition ModelConfig.h:34
Persistable container for RooFit projects.
RooAbsPdf * pdf(RooStringView name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
RooAbsArg * arg(RooStringView name) const
Return RooAbsArg with given name. A null pointer is returned if none is found.
bool import(const RooAbsArg &arg, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={})
Import a RooAbsArg object, e.g.
Class to manage histogram axis.
Definition TAxis.h:32
Bool_t IsVariableBinSize() const
Definition TAxis.h:144
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
const TArrayD * GetXbins() const
Definition TAxis.h:138
Double_t GetXmax() const
Definition TAxis.h:142
Double_t GetXmin() const
Definition TAxis.h:141
Int_t GetNbins() const
Definition TAxis.h:127
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:109
TAxis * GetZaxis()
Definition TH1.h:573
virtual Int_t GetNbinsY() const
Definition TH1.h:542
virtual Int_t GetNbinsZ() const
Definition TH1.h:543
virtual Int_t GetDimension() const
Definition TH1.h:527
TAxis * GetXaxis()
Definition TH1.h:571
virtual Int_t GetNbinsX() const
Definition TH1.h:541
TAxis * GetYaxis()
Definition TH1.h:572
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5229
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5197
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5076
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:173
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:226
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1088
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2384
RooCmdArg RecycleConflictNodes(bool flag=true)
RooCmdArg Rename(const char *suffix)
RooCmdArg Conditional(const RooArgSet &pdfSet, const RooArgSet &depSet, bool depsAreCond=false)
RooConstVar & RooConst(double val)
RooCmdArg Index(RooCategory &icat)
RooCmdArg StoreError(const RooArgSet &aset)
RooCmdArg WeightVar(const char *name="weight", bool reinterpretAsWeight=false)
RooCmdArg Import(const char *state, TH1 &histo)
T * OwningPtr
An alias for raw pointers for indicating that the return type of a RooFit function is an owning point...
Definition Config.h:35
@ ObjectHandling
OwningPtr< T > makeOwningPtr(std::unique_ptr< T > &&ptr)
Internal helper to turn a std::unique_ptr<T> into an OwningPtr.
Definition Config.h:40
CreateGammaConstraintsOutput createGammaConstraints(RooArgList const &paramList, std::span< const double > relSigmas, double minSigma, Constraint::Type type)
Namespace for the RooStats classes.
Definition CodegenImpl.h:61