28#ifndef ROOT_TMVA_MCFitter
29#define ROOT_TMVA_MCFitter
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
Base class for TMVA fitters.
Double_t Run()
estimator function interface for fitting
Interface for a fitter 'target'.
Fitter using Monte Carlo sampling of parameters.
UInt_t fSeed
Seed for the random generator (0 takes random seeds)
void SetParameters(Int_t cycles)
set MC fitter configuration parameters
Double_t fSigma
new samples are generated randomly with a gaussian probability with fSigma around the current best va...
MCFitter(IFitterTarget &target, const TString &name, const std::vector< TMVA::Interval * > &ranges, const TString &theOption)
constructor
void DeclareOptions()
Declare MCFitter options.
Int_t fSamples
number of MC samples
create variable transformations