Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMLPAnalyzer.cxx
Go to the documentation of this file.
1// @(#)root/mlp:$Id$
2// Author: Christophe.Delaere@cern.ch 25/04/04
3
4/*************************************************************************
5 * Copyright (C) 1995-2003, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/** \class TMLPAnalyzer
13
14This utility class contains a set of tests useful when developing
15a neural network.
16It allows you to check for unneeded variables, and to control
17the network structure.
18
19*/
20
21#include "TROOT.h"
22#include "TSynapse.h"
23#include "TNeuron.h"
25#include "TMLPAnalyzer.h"
26#include "TTree.h"
27#include "TTreeFormula.h"
28#include "TEventList.h"
29#include "TH1D.h"
30#include "TProfile.h"
31#include "THStack.h"
32#include "TLegend.h"
33#include "TVirtualPad.h"
34#include "TRegexp.h"
35#include "TMath.h"
36#include "snprintf.h"
37#include <iostream>
38#include <cstdlib>
39
41
42////////////////////////////////////////////////////////////////////////////////
43/// Destructor
44
46{
47 delete fAnalysisTree;
48 delete fIOTree;
49}
50
51////////////////////////////////////////////////////////////////////////////////
52/// Returns the number of layers.
53
55{
56 TString fStructure = fNetwork->GetStructure();
57 return fStructure.CountChar(':')+1;
58}
59
60////////////////////////////////////////////////////////////////////////////////
61/// Returns the number of neurons in given layer.
62
64{
65 if(layer==1) {
66 TString fStructure = fNetwork->GetStructure();
67 TString input = TString(fStructure(0, fStructure.First(':')));
68 return input.CountChar(',')+1;
69 }
70 else if(layer==GetLayers()) {
71 TString fStructure = fNetwork->GetStructure();
72 TString output = TString(fStructure(fStructure.Last(':') + 1,
73 fStructure.Length() - fStructure.Last(':')));
74 return output.CountChar(',')+1;
75 }
76 else {
77 Int_t cnt=1;
78 TString fStructure = fNetwork->GetStructure();
79 TString hidden = TString(fStructure(fStructure.First(':') + 1,
80 fStructure.Last(':') - fStructure.First(':') - 1));
81 Int_t beg = 0;
82 Int_t end = hidden.Index(":", beg + 1);
83 Int_t num = 0;
84 while (end != -1) {
85 num = atoi(TString(hidden(beg, end - beg)).Data());
86 cnt++;
87 beg = end + 1;
88 end = hidden.Index(":", beg + 1);
89 if(layer==cnt) return num;
90 }
91 num = atoi(TString(hidden(beg, hidden.Length() - beg)).Data());
92 cnt++;
93 if(layer==cnt) return num;
94 }
95 return -1;
96}
97
98////////////////////////////////////////////////////////////////////////////////
99/// Returns the formula used as input for neuron (idx) in
100/// the first layer.
101
103{
104 TString fStructure = fNetwork->GetStructure();
105 TString input = TString(fStructure(0, fStructure.First(':')));
106 Int_t beg = 0;
107 Int_t end = input.Index(",", beg + 1);
109 Int_t cnt = 0;
110 while (end != -1) {
111 brName = TString(input(beg, end - beg));
112 if (brName[0]=='@')
113 brName = brName(1,brName.Length()-1);
114 beg = end + 1;
115 end = input.Index(",", beg + 1);
116 if(cnt==idx) return brName;
117 cnt++;
118 }
119 brName = TString(input(beg, input.Length() - beg));
120 if (brName[0]=='@')
121 brName = brName(1,brName.Length()-1);
122 return brName;
123}
124
125////////////////////////////////////////////////////////////////////////////////
126/// Returns the name of any neuron from the input layer
127
129{
130 TNeuron* neuron=(TNeuron*)fNetwork->fFirstLayer[in];
131 return neuron ? neuron->GetName() : "NO SUCH NEURON";
132}
133
134////////////////////////////////////////////////////////////////////////////////
135/// Returns the name of any neuron from the output layer
136
138{
139 TNeuron* neuron=(TNeuron*)fNetwork->fLastLayer[out];
140 return neuron ? neuron->GetName() : "NO SUCH NEURON";
141}
142
143////////////////////////////////////////////////////////////////////////////////
144/// Gives some information about the network in the terminal.
145
147{
148 TString fStructure = fNetwork->GetStructure();
149 std::cout << "Network with structure: " << fStructure.Data() << std::endl;
150 std::cout << "inputs with low values in the differences plot may not be needed" << std::endl;
151 // Checks if some input variable is not needed
152 char var[64], sel[64];
153 for (Int_t i = 0; i < GetNeurons(1); i++) {
154 snprintf(var,64,"diff>>tmp%d",i);
155 snprintf(sel,64,"inNeuron==%d",i);
156 fAnalysisTree->Draw(var, sel, "goff");
157 TH1F* tmp = (TH1F*)gDirectory->Get(Form("tmp%d",i));
158 if (!tmp) continue;
159 std::cout << GetInputNeuronTitle(i)
160 << " -> " << tmp->GetMean()
161 << " +/- " << tmp->GetRMS() << std::endl;
162 }
163}
164
165////////////////////////////////////////////////////////////////////////////////
166/// Collect information about what is useful in the network.
167/// This method has to be called first when analyzing a network.
168/// Fills the two analysis trees.
169
171{
172 Double_t shift = 0.1;
175 Int_t nEvents = test->GetN();
176 Int_t nn = GetNeurons(1);
177 Double_t* params = new Double_t[nn];
178 Double_t* rms = new Double_t[nn];
180 Int_t* index = new Int_t[nn];
181 TString formula;
182 TRegexp re("{[0-9]+}$");
183 Ssiz_t len = formula.Length();
184 Ssiz_t pos = -1;
185 Int_t i(0), j(0), k(0), l(0);
186 for(i=0; i<nn; i++){
187 formula = GetNeuronFormula(i);
188 pos = re.Index(formula,&len);
189 if(pos==-1 || len<3) {
190 formulas[i] = new TTreeFormula(Form("NF%zu",(size_t)this),formula,data);
191 index[i] = 0;
192 }
193 else {
194 TString newformula(formula,pos);
195 TString val = formula(pos+1,len-2);
196 formulas[i] = new TTreeFormula(Form("NF%zu",(size_t)this),newformula,data);
197 formula = newformula;
198 index[i] = val.Atoi();
199 }
200 TH1D tmp("tmpb", "tmpb", 1, -FLT_MAX, FLT_MAX);
201 data->Draw(Form("%s>>tmpb",formula.Data()),"","goff");
202 rms[i] = tmp.GetRMS();
203 }
204 Int_t inNeuron = 0;
205 Double_t diff = 0.;
206 if(fAnalysisTree) delete fAnalysisTree;
207 fAnalysisTree = new TTree("result","analysis");
208 fAnalysisTree->SetDirectory(nullptr);
209 fAnalysisTree->Branch("inNeuron",&inNeuron,"inNeuron/I");
210 fAnalysisTree->Branch("diff",&diff,"diff/D");
214
215 delete fIOTree;
216 fIOTree=new TTree("MLP_iotree","MLP_iotree");
217 fIOTree->SetDirectory(nullptr);
219 for (i=0; i<nn; i++)
220 leaflist+=Form("In%d/D:",i);
221 leaflist.Remove(leaflist.Length()-1);
222 fIOTree->Branch("In", params, leaflist);
223
224 leaflist="";
225 for (i=0; i<numOutNodes; i++)
226 leaflist+=Form("Out%d/D:",i);
227 leaflist.Remove(leaflist.Length()-1);
228 fIOTree->Branch("Out", outVal, leaflist);
229
230 leaflist="";
231 for (i=0; i<numOutNodes; i++)
232 leaflist+=Form("True%d/D:",i);
233 leaflist.Remove(leaflist.Length()-1);
234 fIOTree->Branch("True", trueVal, leaflist);
235 Double_t v1 = 0.;
236 Double_t v2 = 0.;
237 // Loop on the events in the test sample
238 for(j=0; j< nEvents; j++) {
239 fNetwork->GetEntry(test->GetEntry(j));
240 // Loop on the neurons to evaluate
241 for(k=0; k<GetNeurons(1); k++) {
242 params[k] = formulas[k]->EvalInstance(index[k]);
243 }
244 for(k=0; k<GetNeurons(GetLayers()); k++) {
245 outVal[k] = fNetwork->Evaluate(k,params);
246 trueVal[k] = ((TNeuron*)fNetwork->fLastLayer[k])->GetBranch();
247 }
248 fIOTree->Fill();
249
250 // Loop on the input neurons
251 for (i = 0; i < GetNeurons(1); i++) {
252 inNeuron = i;
253 diff = 0;
254 // Loop on the neurons in the output layer
255 for(l=0; l<GetNeurons(GetLayers()); l++){
256 params[i] += shift*rms[i];
257 v1 = fNetwork->Evaluate(l,params);
258 params[i] -= 2*shift*rms[i];
259 v2 = fNetwork->Evaluate(l,params);
260 diff += (v1-v2)*(v1-v2);
261 // reset to original value
262 params[i] += shift*rms[i];
263 }
266 }
267 }
268 delete[] params;
269 delete[] rms;
270 delete[] outVal;
271 delete[] trueVal;
272 delete[] index;
273 for(i=0; i<GetNeurons(1); i++) delete formulas[i];
274 delete [] formulas;
277}
278
279////////////////////////////////////////////////////////////////////////////////
280/// Draws the distribution (on the test sample) of the
281/// impact on the network output of a small variation of
282/// the ith input.
283
285{
286 char sel[64];
287 snprintf(sel,64, "inNeuron==%d", i);
288 fAnalysisTree->Draw("diff", sel);
289}
290
291////////////////////////////////////////////////////////////////////////////////
292/// Draws the distribution (on the test sample) of the
293/// impact on the network output of a small variation of
294/// each input.
295/// DrawDInputs() draws something that approximates the distribution of the
296/// derivative of the NN w.r.t. each input. That quantity is recognized as
297/// one of the measures to determine key quantities in the network.
298///
299/// What is done is to vary one input around its nominal value and to see
300/// how the NN changes. This is done for each entry in the sample and produces
301/// a distribution.
302///
303/// What you can learn from that is:
304/// - is variable a really useful, or is my network insensitive to it ?
305/// - is there any risk of big systematic ? Is the network extremely sensitive
306/// to small variations of any of my inputs ?
307///
308/// As you might understand, this is to be considered with care and can serve
309/// as input for an "educated guess" when optimizing the network.
310
312{
313 THStack* stack = new THStack("differences","differences (impact of variables on ANN)");
314 TLegend* legend = new TLegend(0.75,0.75,0.95,0.95);
315 TH1F* tmp = nullptr;
316 char var[64], sel[64];
317 for(Int_t i = 0; i < GetNeurons(1); i++) {
318 snprintf(var,64, "diff>>tmp%d", i);
319 snprintf(sel,64, "inNeuron==%d", i);
320 fAnalysisTree->Draw(var, sel, "goff");
321 tmp = (TH1F*)gDirectory->Get(Form("tmp%d",i));
322 tmp->SetDirectory(nullptr);
323 tmp->SetLineColor(i+1);
324 stack->Add(tmp);
325 legend->AddEntry(tmp,GetInputNeuronTitle(i),"l");
326 }
327 stack->Draw("nostack");
328 legend->Draw();
329 gPad->SetLogy();
330}
331
332////////////////////////////////////////////////////////////////////////////////
333/// Draws the distribution of the neural network (using ith neuron).
334/// Two distributions are drawn, for events passing respectively the "signal"
335/// and "background" cuts. Only the test sample is used.
336
337void TMLPAnalyzer::DrawNetwork(Int_t neuron, const char* signal, const char* bg)
338{
341 TEventList* current = data->GetEventList();
342 data->SetEventList(test);
343 THStack* stack = new THStack("__NNout_TMLPA",Form("Neural net output (neuron %d)",neuron));
344 TH1F *bgh = new TH1F("__bgh_TMLPA", "NN output", 50, -0.5, 1.5);
345 TH1F *sigh = new TH1F("__sigh_TMLPA", "NN output", 50, -0.5, 1.5);
346 bgh->SetDirectory(nullptr);
347 sigh->SetDirectory(nullptr);
348 Int_t nEvents = 0;
349 Int_t j=0;
350 // build event lists for signal and background
351 TEventList* signal_list = new TEventList("__tmpSig_MLPA");
352 TEventList* bg_list = new TEventList("__tmpBkg_MLPA");
353 data->Draw(">>__tmpSig_MLPA",signal,"goff");
354 data->Draw(">>__tmpBkg_MLPA",bg,"goff");
355
356 // fill the background
357 nEvents = bg_list->GetN();
358 for(j=0; j< nEvents; j++) {
359 bgh->Fill(fNetwork->Result(bg_list->GetEntry(j),neuron));
360 }
361 // fill the signal
362 nEvents = signal_list->GetN();
363 for(j=0; j< nEvents; j++) {
364 sigh->Fill(fNetwork->Result(signal_list->GetEntry(j),neuron));
365 }
366 // draws the result
367 bgh->SetLineColor(kBlue);
368 bgh->SetFillStyle(3008);
369 bgh->SetFillColor(kBlue);
370 sigh->SetLineColor(kRed);
371 sigh->SetFillStyle(3003);
372 sigh->SetFillColor(kRed);
373 bgh->SetStats(false);
374 sigh->SetStats(false);
375 stack->Add(bgh);
376 stack->Add(sigh);
377 TLegend *legend = new TLegend(.75, .80, .95, .95);
378 legend->AddEntry(bgh, "Background");
379 legend->AddEntry(sigh,"Signal");
380 stack->Draw("nostack");
381 legend->Draw();
382 // restore the default event list
383 data->SetEventList(current);
384 delete signal_list;
385 delete bg_list;
386}
387
388////////////////////////////////////////////////////////////////////////////////
389/// Create a profile of the difference of the MLP output minus the
390/// true value for a given output node outnode, vs the true value for
391/// outnode, for all test data events. This method is mainly useful
392/// when doing regression analysis with the MLP (i.e. not classification,
393/// but continuous truth values).
394/// The resulting TProfile histogram is returned.
395/// It is not drawn if option "goff" is specified.
396/// Options are passed to TProfile::Draw
397
399 Option_t *option /*=""*/)
400{
402 TString pipehist=Form("MLP_truthdev_%d",outnode);
404 drawline.Form("Out.Out%d-True.True%d:True.True%d>>",
406 fIOTree->Draw(drawline+pipehist+"(20)", "", "goff prof");
408 h->SetDirectory(nullptr);
409 const char* title=GetOutputNeuronTitle(outnode);
410 if (title) {
411 h->SetTitle(Form("#Delta(output - truth) vs. truth for %s",
412 title));
413 h->GetXaxis()->SetTitle(title);
414 h->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s", title));
415 }
416 if (!strstr(option,"goff"))
417 h->Draw();
418 return h;
419}
420
421////////////////////////////////////////////////////////////////////////////////
422/// Creates TProfiles of the difference of the MLP output minus the
423/// true value vs the true value, one for each output, filled with the
424/// test data events. This method is mainly useful when doing regression
425/// analysis with the MLP (i.e. not classification, but continuous truth
426/// values).
427/// The returned THStack contains all the TProfiles. It is drawn unless
428/// the option "goff" is specified.
429/// Options are passed to TProfile::Draw.
430
432{
433 THStack *hs=new THStack("MLP_TruthDeviation",
434 "Deviation of MLP output from truth");
435
436 // leg!=0 means we're drawing
437 TLegend *leg=nullptr;
438 if (!option || !strstr(option,"goff"))
439 leg=new TLegend(.4,.85,.95,.95,"#Delta(output - truth) vs. truth for:");
440
441 const char* xAxisTitle=nullptr;
442
443 // create profile for each input neuron,
444 // adding them into the THStack and the TLegend
447 h->SetLineColor(1+outnode);
448 hs->Add(h, option);
449 if (leg) leg->AddEntry(h,GetOutputNeuronTitle(outnode));
450 if (!outnode)
451 // Xaxis title is the same for all, extract it from the first one.
452 xAxisTitle=h->GetXaxis()->GetTitle();
453 }
454
455 if (leg) {
456 hs->Draw("nostack");
457 leg->Draw();
458 // gotta draw before accessing the axes
459 hs->GetXaxis()->SetTitle(xAxisTitle);
460 hs->GetYaxis()->SetTitle("#Delta(output - truth)");
461 }
462
463 return hs;
464}
465
466////////////////////////////////////////////////////////////////////////////////
467/// Creates a profile of the difference of the MLP output outnode minus
468/// the true value of outnode vs the input value innode, for all test
469/// data events.
470/// The resulting TProfile histogram is returned.
471/// It is not drawn if option "goff" is specified.
472/// Options are passed to TProfile::Draw
473
475 Int_t outnode /*=0*/,
476 Option_t *option /*=""*/)
477{
479 TString pipehist=Form("MLP_truthdev_i%d_o%d", innode, outnode);
481 drawline.Form("Out.Out%d-True.True%d:In.In%d>>",
483 fIOTree->Draw(drawline+pipehist+"(50)", "", "goff prof");
485 h->SetDirectory(nullptr);
488 h->SetTitle(Form("#Delta(output - truth) of %s vs. input %s",
490 h->GetXaxis()->SetTitle(Form("%s", titleInNeuron));
491 h->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s",
493 if (!strstr(option,"goff"))
494 h->Draw(option);
495 return h;
496}
497
498////////////////////////////////////////////////////////////////////////////////
499/// Creates a profile of the difference of the MLP output outnode minus the
500/// true value of outnode vs the input value, stacked for all inputs, for
501/// all test data events.
502/// The returned THStack contains all the TProfiles. It is drawn unless
503/// the option "goff" is specified.
504/// Options are passed to TProfile::Draw.
505
507 Option_t *option /*=""*/)
508{
510 sName.Form("MLP_TruthDeviationIO_%d", outnode);
512 THStack *hs=new THStack(sName,
513 Form("Deviation of MLP output %s from truth",
515
516 // leg!=0 means we're drawing.
517 TLegend *leg=nullptr;
518 if (!option || !strstr(option,"goff"))
519 leg=new TLegend(.4,.75,.95,.95,
520 Form("#Delta(output - truth) of %s vs. input for:",
522
523 // create profile for each input neuron,
524 // adding them into the THStack and the TLegend
526 Int_t innode=0;
527 for (innode=0; innode<numInNodes; innode++) {
529 h->SetLineColor(1+innode);
530 hs->Add(h, option);
531 if (leg) leg->AddEntry(h,h->GetXaxis()->GetTitle());
532 }
533
534 if (leg) {
535 hs->Draw("nostack");
536 leg->Draw();
537 // gotta draw before accessing the axes
538 hs->GetXaxis()->SetTitle("Input value");
539 hs->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s",
541 }
542
543 return hs;
544}
#define h(i)
Definition RSha256.hxx:106
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:382
@ kRed
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gDirectory
Definition TDirectory.h:384
Option_t Option_t option
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t sel
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
#define gROOT
Definition TROOT.h:406
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Definition TString.cxx:2489
#define gPad
#define snprintf
Definition civetweb.c:1540
<div class="legacybox"><h2>Legacy Code</h2> TEventList is a legacy interface: there will be no bug fi...
Definition TEventList.h:31
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:693
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:645
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8939
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
Definition TH1.cxx:3834
The Histogram stack class.
Definition THStack.h:40
virtual void Add(TH1 *h, Option_t *option="")
Add a new histogram to the list.
Definition THStack.cxx:365
void Draw(Option_t *chopt="") override
Draw this stack with its current attributes.
Definition THStack.cxx:452
This class displays a legend box (TPaveText) containing several legend entries.
Definition TLegend.h:23
This utility class contains a set of tests useful when developing a neural network.
TTree * fAnalysisTree
Int_t GetNeurons(Int_t layer)
Returns the number of neurons in given layer.
Int_t GetLayers()
Returns the number of layers.
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Create a profile of the difference of the MLP output minus the true value for a given output node out...
void DrawDInput(Int_t i)
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
const char * GetOutputNeuronTitle(Int_t out)
Returns the name of any neuron from the output layer.
~TMLPAnalyzer() override
Destructor.
void DrawDInputs()
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
TTree * fIOTree
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
void CheckNetwork()
Gives some information about the network in the terminal.
void GatherInformations()
Collect information about what is useful in the network.
THStack * DrawTruthDeviations(Option_t *option="")
Creates TProfiles of the difference of the MLP output minus the true value vs the true value,...
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
const char * GetInputNeuronTitle(Int_t in)
Returns the name of any neuron from the input layer.
TMultiLayerPerceptron * fNetwork
TString GetNeuronFormula(Int_t idx)
Returns the formula used as input for neuron (idx) in the first layer.
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Draws the distribution of the neural network (using ith neuron).
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
! EventList defining the events in the test dataset
TTree * fData
! pointer to the tree used as datasource
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
void GetEntry(Int_t) const
Load an entry into the network.
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
This class describes an elementary neuron, which is the basic element for a Neural Network.
Definition TNeuron.h:25
Profile Histogram.
Definition TProfile.h:32
Regular expression class.
Definition TRegexp.h:31
Basic string class.
Definition TString.h:139
Ssiz_t Length() const
Definition TString.h:417
Int_t Atoi() const
Return integer value of string.
Definition TString.cxx:1988
Ssiz_t First(char c) const
Find first occurrence of a character c.
Definition TString.cxx:538
const char * Data() const
Definition TString.h:376
Ssiz_t Last(char c) const
Find last occurrence of a character c.
Definition TString.cxx:931
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
Definition TString.cxx:515
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition TString.h:651
Used to pass a selection expression to the Tree drawing routine.
A TTree represents a columnar dataset.
Definition TTree.h:79
virtual Int_t Fill()
Fill all branches.
Definition TTree.cxx:4593
void Draw(Option_t *opt) override
Default Draw method for all objects.
Definition TTree.h:431
virtual void SetDirectory(TDirectory *dir)
Change the tree's directory.
Definition TTree.cxx:8956
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.
Definition TTree.h:353
virtual void ResetBranchAddresses()
Tell all of our branches to drop their current objects and allocate new ones.
Definition TTree.cxx:8065
leg
Definition legend1.C:34
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:666
TLine l
Definition textangle.C:4
static void output()