Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
Parallel analysis tutorials

These examples show data analyses with explicit multithreading and multiprocessing.

When using RDataFrame, implicit multithreading can be enabled by simply calling ROOT::EnableImplicitMT().

Tutorial Description
Multiprocessing Multithreading
mp_parallelHistoFill.C mt_parallelHistoFill.C mtbb_parallelHistoFill.C Fill histograms in parallel
mt_fillHistos.C mtbb_fillHistos.C Fill histograms in parallel and write them on file
mp_processSelector.C Usage of TTreeProcessorMP and TSelector with h1analysis.C

Files

file  mp_parallelHistoFill.C
  View in nbviewer Open in SWAN
Fill histogram in parallel with a multiprocessing approach using TProcessExecutor and TExecutor::MapReduce.
 
file  mp_processSelector.C
  View in nbviewer Open in SWAN
Illustrate the usage of the multiprocessing TTreeProcessorMP and TSelector interfaces with the h1analysis.C example.
 
file  mt_fillHistos.C
  View in nbviewer Open in SWAN
Fill histograms in parallel and write them on file with a multithreaded approach using std::thread.
 
file  mt_parallelHistoFill.C
  View in nbviewer Open in SWAN
Fill histogram in parallel with a multithreaded approach using TThreadedObject and TThreadedObject::SnapshotMerge.
 
file  mtbb_fillHistos.C
  View in nbviewer Open in SWAN
Fill histograms in parallel and write them on file with a multithreaded approach using TThreadExecutor and TExecutor::Map.
 
file  mtbb_parallelHistoFill.C
  View in nbviewer Open in SWAN
Fill histogram in parallel with a multithreaded approach using TThreadExecutor and TExecutor::MapReduce.