Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
RooAbsPdf.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitCore *
4 * @(#)root/roofitcore:$Id$
5 * Authors: *
6 * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7 * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8 * *
9 * Copyright (c) 2000-2005, Regents of the University of California *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16
17//////////////////////////////////////////////////////////////////////////////
18/** \class RooAbsPdf
19 \ingroup Roofitcore
20 \brief Abstract interface for all probability density functions.
21
22## RooAbsPdf, the base class of all PDFs
23
24RooAbsPdf is the base class for all probability density
25functions (PDFs). The class provides hybrid analytical/numerical
26normalization for its implementations, error tracing, and a Monte Carlo
27generator interface.
28
29### A Minimal PDF Implementation
30
31A minimal implementation of a PDF class derived from RooAbsPdf
32should override the `evaluate()` function. This function should
33return the PDF's value (which does not need to be normalised).
34
35
36#### Normalization/Integration
37
38Although the normalization of a PDF is an integral part of a
39probability density function, normalization is treated separately
40in RooAbsPdf. The reason is that a RooAbsPdf object is more than a
41PDF: it can be a building block for a more complex composite PDF
42if any of its variables are functions instead of variables. In
43such cases, the normalization of the composite PDF may not simply be
44integral over the dependents of the top-level PDF: these are
45functions with potentially non-trivial Jacobian terms themselves.
46\note Therefore, no explicit attempt should be made to normalize the
47function output in evaluate(). In particular, normalisation constants
48can be omitted to speed up the function evaluations, and included later
49in the integration of the PDF (see below), which is rarely called in
50comparison to the `evaluate()` function.
51
52In addition, RooAbsPdf objects do not have a static concept of what
53variables are parameters, and what variables are dependents (which
54need to be integrated over for a correct PDF normalization).
55Instead, the choice of normalization is always specified each time a
56normalized value is requested from the PDF via the getVal()
57method.
58
59RooAbsPdf manages the entire normalization logic of each PDF with
60the help of a RooRealIntegral object, which coordinates the integration
61of a given choice of normalization. By default, RooRealIntegral will
62perform an entirely numeric integration of all dependents. However,
63PDFs can advertise one or more (partial) analytical integrals of
64their function, and these will be used by RooRealIntegral, if it
65determines that this is safe (i.e., no hidden Jacobian terms,
66multiplication with other PDFs that have one or more dependents in
67common, etc).
68
69#### Implementing analytical integrals
70To implement analytical integrals, two functions must be implemented. First,
71
72```
73Int_t getAnalyticalIntegral(const RooArgSet& integSet, RooArgSet& anaIntSet)
74```
75should return the analytical integrals that are supported. `integSet`
76is the set of dependents for which integration is requested. The
77function should copy the subset of dependents it can analytically
78integrate to `anaIntSet`, and return a unique identification code for
79this integration configuration. If no integration can be
80performed, zero should be returned. Second,
81
82```
83double analyticalIntegral(Int_t code)
84```
85
86implements the actual analytical integral(s) advertised by
87`getAnalyticalIntegral()`. This function will only be called with
88codes returned by `getAnalyticalIntegral()`, except code zero.
89
90The integration range for each dependent to be integrated can
91be obtained from the dependent's proxy functions `min()` and
92`max()`. Never call these proxy functions for any proxy not known to
93be a dependent via the integration code. Doing so may be
94ill-defined, e.g., in case the proxy holds a function, and will
95trigger an assert. Integrated category dependents should always be
96summed over all of their states.
97
98
99
100### Direct generation of observables
101
102Distributions for any PDF can be generated with the accept/reject method,
103but for certain PDFs, more efficient methods may be implemented. To
104implement direct generation of one or more observables, two
105functions need to be implemented, similar to those for analytical
106integrals:
107
108```
109Int_t getGenerator(const RooArgSet& generateVars, RooArgSet& directVars)
110```
111and
112```
113void generateEvent(Int_t code)
114```
115
116The first function advertises observables, for which distributions can be generated,
117similar to the way analytical integrals are advertised. The second
118function implements the actual generator for the advertised observables.
119
120The generated dependent values should be stored in the proxy
121objects. For this, the assignment operator can be used (i.e. `xProxy
122= 3.0` ). Never call assign to any proxy not known to be a dependent
123via the generation code. Doing so may be ill-defined, e.g. in case
124the proxy holds a function, and will trigger an assert.
126
127### Batched function evaluations (Advanced usage)
128
129To speed up computations with large numbers of data events in unbinned fits,
130it is beneficial to override `doEval()`. Like this, large spans of
131computations can be done, without having to call `evaluate()` for each single data event.
132`doEval()` should execute the same computation as `evaluate()`, but it
133may choose an implementation that is capable of SIMD computations.
134If doEval is not implemented, the classic and slower `evaluate()` will be
135called for each data event.
136*/
137
138#include "RooAbsPdf.h"
139
140#include "FitHelpers.h"
142#include "RooMsgService.h"
143#include "RooArgSet.h"
144#include "RooArgProxy.h"
145#include "RooRealProxy.h"
146#include "RooRealVar.h"
147#include "RooGenContext.h"
148#include "RooBinnedGenContext.h"
149#include "RooPlot.h"
150#include "RooCurve.h"
151#include "RooCategory.h"
152#include "RooNameReg.h"
153#include "RooCmdConfig.h"
154#include "RooGlobalFunc.h"
155#include "RooRandom.h"
156#include "RooNumIntConfig.h"
157#include "RooProjectedPdf.h"
158#include "RooParamBinning.h"
159#include "RooNumCdf.h"
160#include "RooFitResult.h"
161#include "RooNumGenConfig.h"
162#include "RooCachedReal.h"
163#include "RooRealIntegral.h"
164#include "RooWorkspace.h"
165#include "RooNaNPacker.h"
166#include "RooFitImplHelpers.h"
167#include "RooHelpers.h"
168#include "RooFormulaVar.h"
169#include "RooDerivative.h"
170
171#include "ROOT/StringUtils.hxx"
172#include "TMath.h"
173#include "TPaveText.h"
174#include "TMatrixD.h"
175#include "TMatrixDSym.h"
176
177#include <algorithm>
178#include <iostream>
179#include <string>
180#include <cmath>
181#include <stdexcept>
182
183namespace {
184
185inline double getLog(double prob, RooAbsReal const *caller)
186{
187
188 if (prob < 0) {
189 caller->logEvalError("getLogVal() top-level p.d.f evaluates to a negative number");
191 }
192
193 if (std::isinf(prob)) {
194 oocoutW(caller, Eval) << "RooAbsPdf::getLogVal(" << caller->GetName()
195 << ") WARNING: top-level pdf has an infinite value" << std::endl;
196 }
197
198 if (prob == 0) {
199 caller->logEvalError("getLogVal() top-level p.d.f evaluates to zero");
200
201 return -std::numeric_limits<double>::infinity();
202 }
203
204 if (TMath::IsNaN(prob)) {
205 caller->logEvalError("getLogVal() top-level p.d.f evaluates to NaN");
206
207 return prob;
208 }
209
210 return std::log(prob);
211}
212
214{
215 TObject *old = lst.FindObject(obj.GetName());
216 if (old)
217 lst.Replace(old, &obj);
218 else
219 lst.Add(&obj);
220}
221
222} // namespace
223
224using std::endl, std::string, std::ostream, std::vector, std::pair, std::make_pair;
225
227
228
229
230
233
234////////////////////////////////////////////////////////////////////////////////
235/// Default constructor
236
237RooAbsPdf::RooAbsPdf() : _normMgr(this, 10) {}
238
239////////////////////////////////////////////////////////////////////////////////
240/// Constructor with name and title only
241
242RooAbsPdf::RooAbsPdf(const char *name, const char *title) :
243 RooAbsReal(name,title), _normMgr(this,10), _selectComp(true)
244{
246 setTraceCounter(0) ;
247}
248
249
250
251////////////////////////////////////////////////////////////////////////////////
252/// Constructor with name, title, and plot range
253
254RooAbsPdf::RooAbsPdf(const char *name, const char *title,
255 double plotMin, double plotMax) :
256 RooAbsReal(name,title,plotMin,plotMax), _normMgr(this,10), _selectComp(true)
257{
259 setTraceCounter(0) ;
260}
261
262
263
264////////////////////////////////////////////////////////////////////////////////
265/// Copy constructor
266
269 _normMgr(other._normMgr,this), _selectComp(other._selectComp), _normRange(other._normRange)
270{
272 setTraceCounter(other._traceCount) ;
273
274 if (other._specGeneratorConfig) {
275 _specGeneratorConfig = std::make_unique<RooNumGenConfig>(*other._specGeneratorConfig);
276 }
277}
278
279
280
281////////////////////////////////////////////////////////////////////////////////
282/// Destructor
283
287
288
290
291 if (normVal < 0. || (normVal == 0. && rawVal != 0)) {
292 //Unreasonable normalisations. A zero integral can be tolerated if the function vanishes, though.
293 const std::string msg = "p.d.f normalization integral is zero or negative: " + std::to_string(normVal);
294 logEvalError(msg.c_str());
296 return RooNaNPacker::packFloatIntoNaN(-normVal + (rawVal < 0. ? -rawVal : 0.));
297 }
298
299 if (rawVal < 0.) {
300 std::stringstream ss;
301 ss << "p.d.f value is less than zero (" << rawVal << "), trying to recover";
302 logEvalError(ss.str().c_str());
305 }
306
307 if (TMath::IsNaN(rawVal)) {
308 logEvalError("p.d.f value is Not-a-Number");
310 return rawVal;
311 }
312
313 return (rawVal == 0. && normVal == 0.) ? 0. : rawVal / normVal;
314}
315
316
317////////////////////////////////////////////////////////////////////////////////
318/// Return current value, normalized by integrating over
319/// the observables in `nset`. If `nset` is 0, the unnormalized value
320/// is returned. All elements of `nset` must be lvalues.
321///
322/// Unnormalized values are not cached.
323/// Doing so would be complicated as `_norm->getVal()` could
324/// spoil the cache and interfere with returning the cached
325/// return value. Since unnormalized calls are typically
326/// done in integration calls, there is no performance hit.
327
328double RooAbsPdf::getValV(const RooArgSet* nset) const
329{
330
331 // Special handling of case without normalization set (used in numeric integration of pdfs)
332 if (!nset) {
333 RooArgSet const* tmp = _normSet ;
334 _normSet = nullptr ;
335 double val = evaluate() ;
336 _normSet = tmp ;
337
338 return TMath::IsNaN(val) ? 0. : val;
339 }
340
341
342 // Process change in last data set used
343 bool nintChanged(false) ;
344 if (!isActiveNormSet(nset) || _norm==nullptr) {
346 }
347
348 // Return value of object. Calculated if dirty, otherwise cached value is returned.
350
351 // Evaluate numerator
352 const double rawVal = evaluate();
353
354 // Evaluate denominator
355 const double normVal = _norm->getVal();
356
358
360 }
361
362 return _value ;
363}
364
365
366////////////////////////////////////////////////////////////////////////////////
367/// Analytical integral with normalization (see RooAbsReal::analyticalIntegralWN() for further information).
368///
369/// This function applies the normalization specified by `normSet` to the integral returned
370/// by RooAbsReal::analyticalIntegral(). The passthrough scenario (code=0) is also changed
371/// to return a normalized answer.
372
373double RooAbsPdf::analyticalIntegralWN(Int_t code, const RooArgSet* normSet, const char* rangeName) const
374{
375 cxcoutD(Eval) << "RooAbsPdf::analyticalIntegralWN(" << GetName() << ") code = " << code << " normset = " << (normSet?*normSet:RooArgSet()) << std::endl ;
376
377
378 if (code==0) return getVal(normSet) ;
379 if (normSet) {
381 } else {
382 return analyticalIntegral(code,rangeName) ;
383 }
384}
385
386
387
388////////////////////////////////////////////////////////////////////////////////
389/// Check that passed value is positive and not 'not-a-number'. If
390/// not, print an error, until the error counter reaches its set
391/// maximum.
392
394{
395 // check for a math error or negative value
396 bool error(false) ;
397 if (TMath::IsNaN(value)) {
398 logEvalError(Form("p.d.f value is Not-a-Number (%f), forcing value to zero",value)) ;
399 error=true ;
400 }
401 if (value<0) {
402 logEvalError(Form("p.d.f value is less than zero (%f), forcing value to zero",value)) ;
403 error=true ;
404 }
405
406 // do nothing if we are no longer tracing evaluations and there was no error
407 if(!error) return error ;
408
409 // otherwise, print out this evaluations input values and result
410 if(++_errorCount <= 10) {
411 cxcoutD(Tracing) << "*** Evaluation Error " << _errorCount << " ";
412 if(_errorCount == 10) cxcoutD(Tracing) << "(no more will be printed) ";
413 }
414 else {
415 return error ;
416 }
417
418 Print() ;
419 return error ;
420}
421
422
423////////////////////////////////////////////////////////////////////////////////
424/// Get normalisation term needed to normalise the raw values returned by
425/// getVal(). Note that `getVal(normalisationVariables)` will automatically
426/// apply the normalisation term returned here.
427/// \param nset Set of variables to normalise over.
428double RooAbsPdf::getNorm(const RooArgSet* nset) const
429{
430 if (!nset) return 1 ;
431
432 syncNormalization(nset,true) ;
433 if (_verboseEval>1) cxcoutD(Tracing) << ClassName() << "::getNorm(" << GetName() << "): norm(" << _norm << ") = " << _norm->getVal() << std::endl ;
434
435 double ret = _norm->getVal() ;
436 if (ret==0.) {
437 if(++_errorCount <= 10) {
438 coutW(Eval) << "RooAbsPdf::getNorm(" << GetName() << ":: WARNING normalization is zero, nset = " ; nset->Print("1") ;
439 if(_errorCount == 10) coutW(Eval) << "RooAbsPdf::getNorm(" << GetName() << ") INFO: no more messages will be printed " << std::endl ;
440 }
441 }
442
443 return ret ;
444}
445
446
447
448////////////////////////////////////////////////////////////////////////////////
449/// Return pointer to RooAbsReal object that implements calculation of integral over observables iset in range
450/// rangeName, optionally taking the integrand normalized over observables nset
451
452const RooAbsReal* RooAbsPdf::getNormObj(const RooArgSet* nset, const RooArgSet* iset, const TNamed* rangeName) const
453{
454 // Check normalization is already stored
455 CacheElem* cache = static_cast<CacheElem*>(_normMgr.getObj(nset,iset,nullptr,rangeName)) ;
456 if (cache) {
457 return cache->_norm.get();
458 }
459
460 // If not create it now
463
464 // Normalization is always over all pdf components. Overriding the global
465 // component selection temporarily makes all RooRealIntegrals created during
466 // that time always include all components.
468 RooAbsReal* norm = std::unique_ptr<RooAbsReal>{createIntegral(depList,*nset, *getIntegratorConfig(), RooNameReg::str(rangeName))}.release();
469
470 // Store it in the cache
472
473 // And return the newly created integral
474 return norm ;
475}
476
477
478
479////////////////////////////////////////////////////////////////////////////////
480/// Verify that the normalization integral cached with this PDF
481/// is valid for given set of normalization observables.
482///
483/// If not, the cached normalization integral (if any) is deleted
484/// and a new integral is constructed for use with 'nset'.
485/// Elements in 'nset' can be discrete and real, but must be lvalues.
486///
487/// For functions that declare to be self-normalized by overloading the
488/// selfNormalized() function, a unit normalization is always constructed.
489
491{
492 setActiveNormSet(nset);
493
494 // Check if data sets are identical
495 CacheElem *cache = static_cast<CacheElem *>(_normMgr.getObj(nset));
496 if (cache) {
497
498 bool nintChanged = (_norm != cache->_norm.get());
499 _norm = cache->_norm.get();
500
501 // In the past, this condition read `if (nintChanged && adjustProxies)`.
502 // However, the cache checks if the nset was already cached **by content**,
503 // and not by RooArgSet instance! So it can happen that the normalization
504 // set object is different, but the integral object is the same, in which
505 // case it would be wrong to not adjust the proxies. They always have to be
506 // adjusted when the nset changed, which is always the case when
507 // `syncNormalization()` is called.
508 if (adjustProxies) {
509 // Update dataset pointers of proxies
510 const_cast<RooAbsPdf *>(this)->setProxyNormSet(nset);
511 }
512
513 return nintChanged;
514 }
515
516 // Update dataset pointers of proxies
517 if (adjustProxies) {
518 const_cast<RooAbsPdf *>(this)->setProxyNormSet(nset);
519 }
520
522 getObservables(nset, depList);
523
524 if (_verboseEval > 0) {
525 if (!selfNormalized()) {
526 cxcoutD(Tracing) << ClassName() << "::syncNormalization(" << GetName()
527 << ") recreating normalization integral " << std::endl;
528 depList.printStream(ccoutD(Tracing), kName | kValue | kArgs, kSingleLine);
529 } else {
530 cxcoutD(Tracing) << ClassName() << "::syncNormalization(" << GetName()
531 << ") selfNormalized, creating unit norm" << std::endl;
532 }
533 }
534
535 // Destroy old normalization & create new
536 if (selfNormalized() || depList.empty()) {
537 auto ntitle = std::string(GetTitle()) + " Unit Normalization";
538 auto nname = std::string(GetName()) + "_UnitNorm";
539 _norm = new RooRealVar(nname.c_str(), ntitle.c_str(), 1);
540 } else {
541 const char *nr = (_normRangeOverride.Length() > 0 ? _normRangeOverride.Data()
542 : (_normRange.Length() > 0 ? _normRange.Data() : nullptr));
543
544 // std::cout << "RooAbsPdf::syncNormalization(" << GetName() << ") rangeName for normalization is " <<
545 // (nr?nr:"<null>") << std::endl ;
547 {
548 // Normalization is always over all pdf components. Overriding the global
549 // component selection temporarily makes all RooRealIntegrals created during
550 // that time always include all components.
552 normInt = std::unique_ptr<RooAbsReal>{createIntegral(depList, *getIntegratorConfig(), nr)}.release();
553 }
554 static_cast<RooRealIntegral *>(normInt)->setAllowComponentSelection(false);
555 normInt->getVal();
556 // std::cout << "resulting normInt = " << normInt->GetName() << std::endl ;
557
558 const char *cacheParamsStr = getStringAttribute("CACHEPARAMINT");
560
561 std::unique_ptr<RooArgSet> intParams{normInt->getVariables()};
562
564
565 if (!cacheParams.empty()) {
566 cxcoutD(Caching) << "RooAbsReal::createIntObj(" << GetName() << ") INFO: constructing "
567 << cacheParams.size() << "-dim value cache for integral over " << depList
568 << " as a function of " << cacheParams << " in range " << (nr ? nr : "<default>")
569 << std::endl;
570 std::string name = normInt->GetName() + ("_CACHE_[" + cacheParams.contentsString()) + "]";
572 cachedIntegral->setInterpolationOrder(2);
573 cachedIntegral->addOwnedComponents(*normInt);
574 cachedIntegral->setCacheSource(true);
575 if (normInt->operMode() == ADirty) {
576 cachedIntegral->setOperMode(ADirty);
577 }
579 }
580 }
581 _norm = normInt;
582 }
583
584 // Register new normalization with manager (takes ownership)
585 cache = new CacheElem(*_norm);
586 _normMgr.setObj(nset, cache);
587
588 // std::cout << "making new object " << _norm->GetName() << std::endl ;
589
590 return true;
591}
592
593
594
595////////////////////////////////////////////////////////////////////////////////
596/// Reset error counter to given value, limiting the number
597/// of future error messages for this pdf to 'resetValue'
598
604
605
606
607////////////////////////////////////////////////////////////////////////////////
608/// Reset trace counter to given value, limiting the
609/// number of future trace messages for this pdf to 'value'
610
612{
613 if (!allNodes) {
615 return ;
616 } else {
619 for(auto * pdf : dynamic_range_cast<RooAbsPdf*>(branchList)) {
620 if (pdf) pdf->setTraceCounter(value,false) ;
621 }
622 }
623
624}
625
626
627
628
629////////////////////////////////////////////////////////////////////////////////
630/// Return the log of the current value with given normalization
631/// An error message is printed if the argument of the log is negative.
632
633double RooAbsPdf::getLogVal(const RooArgSet* nset) const
634{
635 return getLog(getVal(nset), this);
636}
637////////////////////////////////////////////////////////////////////////////////
638/// This function returns the penalty term.
639/// Penalty terms modify the likelihood,during model parameter estimation.This penalty term is usually
640// a function of the model parameters
642{
643 return 0;
644}
645
646////////////////////////////////////////////////////////////////////////////////
647/// Check for infinity or NaN.
648/// \param[in] inputs Array to check
649/// \return True if either infinity or NaN were found.
650namespace {
651template<class T>
652bool checkInfNaNNeg(const T& inputs) {
653 // check for a math error or negative value
654 bool inf = false;
655 bool nan = false;
656 bool neg = false;
657
658 for (double val : inputs) { //CHECK_VECTORISE
659 inf |= !std::isfinite(val);
660 nan |= TMath::IsNaN(val); // Works also during fast math
661 neg |= val < 0;
662 }
663
664 return inf || nan || neg;
665}
666}
667
668
669////////////////////////////////////////////////////////////////////////////////
670/// Scan through outputs and fix+log all nans and negative values.
671/// \param[in,out] outputs Array to be scanned & fixed.
672/// \param[in] begin Begin of event range. Only needed to print the correct event number
673/// where the error occurred.
674void RooAbsPdf::logBatchComputationErrors(std::span<const double>& outputs, std::size_t begin) const {
675 for (unsigned int i=0; i<outputs.size(); ++i) {
676 const double value = outputs[i];
677 if (TMath::IsNaN(outputs[i])) {
678 logEvalError(Form("p.d.f value of (%s) is Not-a-Number (%f) for entry %zu",
679 GetName(), value, begin+i));
680 } else if (!std::isfinite(outputs[i])){
681 logEvalError(Form("p.d.f value of (%s) is (%f) for entry %zu",
682 GetName(), value, begin+i));
683 } else if (outputs[i] < 0.) {
684 logEvalError(Form("p.d.f value of (%s) is less than zero (%f) for entry %zu",
685 GetName(), value, begin+i));
686 }
687 }
688}
689
690
691void RooAbsPdf::getLogProbabilities(std::span<const double> pdfValues, double * output) const {
692 for (std::size_t i = 0; i < pdfValues.size(); ++i) {
693 output[i] = getLog(pdfValues[i], this);
694 }
695}
696
697////////////////////////////////////////////////////////////////////////////////
698/// Return the extended likelihood term (\f$ N_\mathrm{expect} - N_\mathrm{observed} \cdot \log(N_\mathrm{expect} \f$)
699/// of this PDF for the given number of observed events.
700///
701/// For successful operation, the PDF implementation must indicate that
702/// it is extendable by overloading `canBeExtended()`, and must
703/// implement the `expectedEvents()` function.
704///
705/// \param[in] sumEntries The number of observed events.
706/// \param[in] nset The normalization set when asking the pdf for the expected
707/// number of events.
708/// \param[in] sumEntriesW2 The number of observed events when weighting with
709/// squared weights. If non-zero, the weight-squared error
710/// correction is applied to the extended term.
711/// \param[in] doOffset Offset the extended term by a counterterm where the
712/// expected number of events equals the observed number of events.
713/// This constant shift results in a term closer to zero that is
714/// approximately chi-square distributed. It is useful to do this
715/// also when summing multiple NLL terms to avoid numeric precision
716/// loss that happens if you sum multiple terms of different orders
717/// of magnitude.
718///
719/// The weight-squared error correction works as follows:
720/// adjust poisson such that
721/// estimate of \f$N_\mathrm{expect}\f$ stays at the same value, but has a different variance, rescale
722/// both the observed and expected count of the Poisson with a factor \f$ \sum w_{i} / \sum w_{i}^2 \f$
723/// (the effective weight of the Poisson term),
724/// i.e., change \f$\mathrm{Poisson}(N_\mathrm{observed} = \sum w_{i} | N_\mathrm{expect} )\f$
725/// to \f$ \mathrm{Poisson}(\sum w_{i} \cdot \sum w_{i} / \sum w_{i}^2 | N_\mathrm{expect} \cdot \sum w_{i} / \sum w_{i}^2 ) \f$,
726/// weighted by the effective weight \f$ \sum w_{i}^2 / \sum w_{i} \f$ in the likelihood.
727/// Since here we compute the likelihood with the weight square, we need to multiply by the
728/// square of the effective weight:
729/// - \f$ W_\mathrm{expect} = N_\mathrm{expect} \cdot \sum w_{i} / \sum w_{i}^2 \f$ : effective expected entries
730/// - \f$ W_\mathrm{observed} = \sum w_{i} \cdot \sum w_{i} / \sum w_{i}^2 \f$ : effective observed entries
731///
732/// The extended term for the likelihood weighted by the square of the weight will be then:
733///
734/// \f$ \left(\sum w_{i}^2 / \sum w_{i}\right)^2 \cdot W_\mathrm{expect} - (\sum w_{i}^2 / \sum w_{i})^2 \cdot W_\mathrm{observed} \cdot \log{W_\mathrm{expect}} \f$
735///
736/// aund this is using the previous expressions for \f$ W_\mathrm{expect} \f$ and \f$ W_\mathrm{observed} \f$:
737///
738/// \f$ \sum w_{i}^2 / \sum w_{i} \cdot N_\mathrm{expect} - \sum w_{i}^2 \cdot \log{W_\mathrm{expect}} \f$
739///
740/// Since the weights are constants in the likelihood we can use \f$\log{N_\mathrm{expect}}\f$ instead of \f$\log{W_\mathrm{expect}}\f$.
741///
742/// See also RooAbsPdf::extendedTerm(RooAbsData const& data, bool weightSquared, bool doOffset),
743/// which takes a dataset to extract \f$N_\mathrm{observed}\f$ and the
744/// normalization set.
745double RooAbsPdf::extendedTerm(double sumEntries, RooArgSet const* nset, double sumEntriesW2, bool doOffset) const
746{
747 return extendedTerm(sumEntries, expectedEvents(nset), sumEntriesW2, doOffset);
748}
749
750double RooAbsPdf::extendedTerm(double sumEntries, double expected, double sumEntriesW2, bool doOffset) const
751{
752 // check if this PDF supports extended maximum likelihood fits
753 if(!canBeExtended()) {
754 coutE(InputArguments) << GetName() << ": this PDF does not support extended maximum likelihood"
755 << std::endl;
756 return 0.0;
757 }
758
759 if(expected < 0.0) {
760 coutE(InputArguments) << GetName() << ": calculated negative expected events: " << expected
761 << std::endl;
762 logEvalError("extendedTerm #expected events is <0 return a NaN");
763 return TMath::QuietNaN();
764 }
765
766
767 // Explicitly handle case Nobs=Nexp=0
768 if (std::abs(expected)<1e-10 && std::abs(sumEntries)<1e-10) {
769 return 0.0;
770 }
771
772 // Check for errors in Nexpected
773 if (TMath::IsNaN(expected)) {
774 logEvalError("extendedTerm #expected events is a NaN") ;
775 return TMath::QuietNaN() ;
776 }
777
778 double extra = doOffset
779 ? (expected - sumEntries) - sumEntries * (std::log(expected) - std::log(sumEntries))
780 : expected - sumEntries * std::log(expected);
781
782 if(sumEntriesW2 != 0.0) {
783 extra *= sumEntriesW2 / sumEntries;
784 }
785
786 return extra;
787}
788
789////////////////////////////////////////////////////////////////////////////////
790/// Return the extended likelihood term (\f$ N_\mathrm{expect} - N_\mathrm{observed} \cdot \log(N_\mathrm{expect} \f$)
791/// of this PDF for the given number of observed events.
792///
793/// This function is a wrapper around
794/// RooAbsPdf::extendedTerm(double, RooArgSet const *, double, bool) const,
795/// where the number of observed events and observables to be used as the
796/// normalization set for the pdf is extracted from a RooAbsData.
797///
798/// For successful operation, the PDF implementation must indicate that
799/// it is extendable by overloading `canBeExtended()`, and must
800/// implement the `expectedEvents()` function.
801///
802/// \param[in] data The RooAbsData to retrieve the set of observables and
803/// number of expected events.
804/// \param[in] weightSquared If set to `true`, the extended term will be scaled by
805/// the ratio of squared event weights over event weights:
806/// \f$ \sum w_{i}^2 / \sum w_{i} \f$.
807/// Intended to be used by fits with the `SumW2Error()` option that
808/// can be passed to RooAbsPdf::fitTo()
809/// (see the documentation of said function to learn more about the
810/// interpretation of fits with squared weights).
811/// \param[in] doOffset See RooAbsPdf::extendedTerm(double, RooArgSet const*, double, bool) const.
812
813double RooAbsPdf::extendedTerm(RooAbsData const& data, bool weightSquared, bool doOffset) const {
814 double sumW = data.sumEntries();
815 double sumW2 = 0.0;
816 if (weightSquared) {
817 sumW2 = data.sumEntriesW2();
818 }
819 return extendedTerm(sumW, data.get(), sumW2, doOffset);
820}
821
822
823/** @fn RooAbsPdf::createNLL()
824 *
825 * @brief Construct representation of -log(L) of PDF with given dataset.
826 *
827 * If dataset is unbinned, an unbinned likelihood is constructed.
828 * If the dataset is binned, a binned likelihood is constructed.
829 *
830 * @param data Reference to a RooAbsData object representing the dataset.
831 * @param cmdArgs Variadic template arguments representing optional command arguments.
832 * You can pass either an arbitrary number of RooCmdArg instances
833 * or a single RooLinkedList that points to the RooCmdArg objects.
834 * @return An owning pointer to the created RooAbsReal NLL object.
835 *
836 * @tparam CmdArgs_t Template types for optional command arguments.
837 * Can either be an arbitrary number of RooCmdArg or a single RooLinkedList.
838 *
839 * \note This front-end function should not be re-implemented in derived PDF types.
840 * If you mean to customize the NLL creation routine,
841 * you need to override the virtual RooAbsPdf::createNLLImpl() method.
842 *
843 * The following named arguments are supported:
844 *
845 * <table>
846 * <tr><th> Type of CmdArg <th> Effect on NLL
847 * <tr><td> `ConditionalObservables(Args_t &&... argsOrArgSet)` <td> Do not normalize PDF over listed observables.
848 * Arguments can either be multiple RooRealVar or a single RooArgSet containing them.
849 * <tr><td> `Extended(bool flag)` <td> Add extended likelihood term, off by default.
850 * <tr><td> `Range(const char* name)` <td> Fit only data inside range with given name. Multiple comma-separated range names can be specified.
851 * In this case, the unnormalized PDF \f$f(x)\f$ is normalized by the integral over all ranges \f$r_i\f$:
852 * \f[
853 * p(x) = \frac{f(x)}{\sum_i \int_{r_i} f(x) dx}.
854 * \f]
855 * <tr><td> `Range(double lo, double hi)` <td> Fit only data inside given range. A range named "fit" is created on the fly on all observables.
856 * <tr><td> `SumCoefRange(const char* name)` <td> Set the range in which to interpret the coefficients of RooAddPdf components
857 * <tr><td> `NumCPU(int num, int istrat)` <td> Parallelize NLL calculation on num CPUs. (Currently, this setting is ignored with the **cpu** Backend.)
858 * <table>
859 * <tr><th> Strategy <th> Effect
860 * <tr><td> 0 = RooFit::BulkPartition - *default* <td> Divide events in N equal chunks
861 * <tr><td> 1 = RooFit::Interleave <td> Process event i%N in process N. Recommended for binned data with
862 * a substantial number of zero-bins, which will be distributed across processes more equitably in this strategy
863 * <tr><td> 2 = RooFit::SimComponents <td> Process each component likelihood of a RooSimultaneous fully in a single process
864 * and distribute components over processes. This approach can be beneficial if normalization calculation time
865 * dominates the total computation time of a component (since the normalization calculation must be performed
866 * in each process in strategies 0 and 1. However beware that if the RooSimultaneous components do not share many
867 * parameters this strategy is inefficient: as most minuit-induced likelihood calculations involve changing
868 * a single parameter, only 1 of the N processes will be active most of the time if RooSimultaneous components
869 * do not share many parameters
870 * <tr><td> 3 = RooFit::Hybrid <td> Follow strategy 0 for all RooSimultaneous components, except those with less than
871 * 30 dataset entries, for which strategy 2 is followed.
872 * </table>
873 * <tr><td> `EvalBackend(std::string const&)` <td> Choose a likelihood evaluation backend:
874 * <table>
875 * <tr><th> Backend <th> Description
876 * <tr><td> **cpu** - *default* <td> New vectorized evaluation mode, using faster math functions and auto-vectorisation (currently on a single thread).
877 * Since ROOT 6.23, this is the default if `EvalBackend()` is not passed, succeeding the **legacy** backend.
878 * If all RooAbsArg objects in the model support vectorized evaluation,
879 * likelihood computations are 2 to 10 times faster than with the **legacy** backend (each on a single thread).
880 * - unless your dataset is so small that the vectorization is not worth it.
881 * The relative difference of the single log-likelihoods with respect to the legacy mode is usually better than \f$10^{-12}\f$,
882 * and for fit parameters it's usually better than \f$10^{-6}\f$. In past ROOT releases, this backend could be activated with the now deprecated `BatchMode()` option.
883 * <tr><td> **cuda** <td> Evaluate the likelihood on a GPU that supports CUDA.
884 * This backend re-uses code from the **cpu** backend, but compiled in CUDA kernels.
885 * Hence, the results are expected to be identical, modulo some numerical differences that can arise from the different order in which the GPU is summing the log probabilities.
886 * This backend can drastically speed up the fit if all RooAbsArg object in the model support it.
887 * <tr><td> **legacy** <td> The original likelihood evaluation method.
888 * Evaluates the PDF for each single data entry at a time before summing the negative log probabilities.
889 * It supports multi-threading, but you might need more than 20 threads to maybe see about 10% performance gain over the default cpu-backend (that runs currently only on a single thread).
890 * <tr><td> **codegen** <td> **Experimental** - Generates and compiles minimal C++ code for the NLL on-the-fly and wraps it in the returned RooAbsReal.
891 * Also generates and compiles the code for the gradient using Automatic Differentiation (AD) with [Clad](https://github.com/vgvassilev/clad).
892 * This analytic gradient is passed to the minimizer, which can result in significant speedups for many-parameter fits,
893 * even compared to the **cpu** backend. However, if one of the RooAbsArg objects in the model does not support the code generation,
894 * this backend can't be used.
895 * <tr><td> **codegen_no_grad** <td> **Experimental** - Same as **codegen**, but doesn't generate and compile the gradient code and use the regular numerical differentiation instead.
896 * This is expected to be slower, but useful for debugging problems with the analytic gradient.
897 * </table>
898 * <tr><td> `Optimize(bool flag)` <td> Activate constant term optimization (on by default)
899 * <tr><td> `SplitRange(bool flag)` <td> Use separate fit ranges in a simultaneous fit. Actual range name for each subsample is assumed to
900 * be `rangeName_indexState`, where `indexState` is the state of the master index category of the simultaneous fit.
901 * Using `Range("range"), SplitRange()` as switches, different ranges could be set like this:
902 * ```
903 * myVariable.setRange("range_pi0", 135, 210);
904 * myVariable.setRange("range_gamma", 50, 210);
905 * ```
906 * <tr><td> `Constrain(const RooArgSet&pars)` <td> For p.d.f.s that contain internal parameter constraint terms (that is usually product PDFs, where one
907 * term of the product depends on parameters but not on the observable(s),), only apply constraints to the given subset of parameters.
908 * <tr><td> `ExternalConstraints(const RooArgSet& )` <td> Include given external constraints to likelihood by multiplying them with the original likelihood.
909 * <tr><td> `GlobalObservables(const RooArgSet&)` <td> Define the set of normalization observables to be used for the constraint terms.
910 * If none are specified the constrained parameters are used.
911 * <tr><td> `GlobalObservablesSource(const char* sourceName)` <td> Which source to prioritize for global observable values.
912 * Can be either:
913 * - `data`: to take the values from the dataset,
914 * falling back to the pdf value if a given global observable is not available.
915 * If no `GlobalObservables` or `GlobalObservablesTag` command argument is given, the set
916 * of global observables will be automatically defined to be the set stored in the data.
917 * - `model`: to take all values from the pdf and completely ignore the set of global observables stored in the data
918 * (not even using it to automatically define the set of global observables
919 * if the `GlobalObservables` or `GlobalObservablesTag` command arguments are not given).
920 * The default option is `data`.
921 * <tr><td> `GlobalObservablesTag(const char* tagName)` <td> Define the set of normalization observables to be used for the constraint terms by
922 * a string attribute associated with pdf observables that match the given tagName.
923 * <tr><td> `Verbose(bool flag)` <td> Controls RooFit informational messages in likelihood construction
924 * <tr><td> `CloneData(bool flag)` <td> Use clone of dataset in NLL (default is true).
925 * \warning Deprecated option that is ignored. It is up to the implementation of the NLL creation method if the data is cloned or not.
926 * <tr><td> `Offset(std::string const& mode)` <td> Likelihood offsetting mode. Can be either:
927 * <table>
928 * <tr><th> Mode <th> Description
929 * <tr><td> **none** - *default* <td> No offsetting.
930 * <tr><td> **initial** <td> Offset likelihood by initial value (so that starting value of FCN in minuit is zero).
931 * This can improve numeric stability in simultaneous fits with components with large likelihood values.
932 * <tr><td> **bin** <td> Offset likelihood bin-by-bin with a template histogram model based on the obersved data.
933 * This results in per-bin values that are all in the same order of magnitude, which reduces precision loss in the sum,
934 * which can drastically improve numeric stability.
935 * Furthermore, \f$2\cdot \text{NLL}\f$ defined like this is approximately chi-square distributed, allowing for goodness-of-fit tests.
936 * </table>
937 * <tr><td> `IntegrateBins(double precision)` <td> In binned fits, integrate the PDF over the bins instead of using the probability density at the bin centre.
938 * This can reduce the bias observed when fitting functions with high curvature to binned data.
939 * - precision > 0: Activate bin integration everywhere. Use precision between 0.01 and 1.E-6, depending on binning.
940 * Note that a low precision such as 0.01 might yield identical results to 1.E-4, since the integrator might reach 1.E-4 already in its first
941 * integration step. If lower precision is desired (more speed), a RooBinSamplingPdf has to be created manually, and its integrator
942 * has to be manipulated directly.
943 * - precision = 0: Activate bin integration only for continuous PDFs fit to a RooDataHist.
944 * - precision < 0: Deactivate.
945 * \see RooBinSamplingPdf
946 * <tr><td> `ModularL(bool flag)` <td> Enable or disable modular likelihoods, which will become the default in a future release.
947 * This does not change any user-facing code, but only enables a different likelihood class in the back-end. Note that this
948 * should be set to true for parallel minimization of likelihoods!
949 * Note that it is currently not recommended to use Modular likelihoods without any parallelization enabled in the minimization, since
950 * some features such as offsetting might not yet work in this case.
951 * </table>
952 */
953
954
955/** @brief Protected implementation of the NLL creation routine.
956 *
957 * This virtual function can be overridden in case you want to change the NLL creation logic for custom PDFs.
958 *
959 * \note Never call this function directly. Instead, call RooAbsPdf::createNLL().
960 */
961
962std::unique_ptr<RooAbsReal> RooAbsPdf::createNLLImpl(RooAbsData &data, const RooLinkedList &cmdList)
963{
964 return RooFit::FitHelpers::createNLL(*this, data, cmdList);
965}
966
967
968/** @fn RooAbsPdf::fitTo()
969 *
970 * @brief Fit PDF to given dataset.
971 *
972 * If dataset is unbinned, an unbinned maximum likelihood is performed.
973 * If the dataset is binned, a binned maximum likelihood is performed.
974 * By default the fit is executed through the MINUIT commands MIGRAD, HESSE in succession.
975 *
976 * @param data Reference to a RooAbsData object representing the dataset.
977 * @param cmdArgs Variadic template arguments representing optional command arguments.
978 * You can pass either an arbitrary number of RooCmdArg instances
979 * or a single RooLinkedList that points to the RooCmdArg objects.
980 * @return An owning pointer to the created RooAbsReal NLL object.
981 * @return RooFitResult with fit status and parameters if option Save() is used, `nullptr` otherwise. The user takes ownership of the fit result.
982 *
983 * @tparam CmdArgs_t Template types for optional command arguments.
984 * Can either be an arbitrary number of RooCmdArg or a single RooLinkedList.
985 *
986 * \note This front-end function should not be re-implemented in derived PDF types.
987 * If you mean to customize the likelihood fitting routine,
988 * you need to override the virtual RooAbsPdf::fitToImpl() method.
989 *
990 * The following named arguments are supported:
991 *
992 * <table>
993 * <tr><th> Type of CmdArg <th> Options to control construction of -log(L)
994 * <tr><td> <td> All command arguments that can also be passed to the NLL creation method.
995 * \see RooAbsPdf::createNLL()
996 *
997 * <tr><th><th> Options to control flow of fit procedure
998 * <tr><td> `Minimizer("<type>", "<algo>")` <td> Choose minimization package and optionally the algorithm to use. Default is MINUIT/MIGRAD through the RooMinimizer interface,
999 * but others can be specified (through RooMinimizer interface).
1000 * <table>
1001 * <tr><th> Type <th> Algorithm
1002 * <tr><td> Minuit <td> migrad, simplex, minimize (=migrad+simplex), migradimproved (=migrad+improve)
1003 * <tr><td> Minuit2 <td> migrad, simplex, minimize, scan
1004 * <tr><td> GSLMultiMin <td> conjugatefr, conjugatepr, bfgs, bfgs2, steepestdescent
1005 * <tr><td> GSLSimAn <td> -
1006 * </table>
1007 *
1008 * <tr><td> `InitialHesse(bool flag)` <td> Flag controls if HESSE before MIGRAD as well, off by default
1009 * <tr><td> `Optimize(bool flag)` <td> Activate constant term optimization of test statistic during minimization (on by default)
1010 * <tr><td> `Hesse(bool flag)` <td> Flag controls if HESSE is run after MIGRAD, on by default
1011 * <tr><td> `Minos(bool flag)` <td> Flag controls if MINOS is run after HESSE, off by default
1012 * <tr><td> `Minos(const RooArgSet& set)` <td> Only run MINOS on given subset of arguments
1013 * <tr><td> `Save(bool flag)` <td> Flag controls if RooFitResult object is produced and returned, off by default
1014 * <tr><td> `Strategy(Int_t flag)` <td> Set Minuit strategy (0 to 2, default is 1)
1015 * <tr><td> `MaxCalls(int n)` <td> Change maximum number of likelihood function calls from MINUIT (if `n <= 0`, the default of 500 * #%parameters is used)
1016 * <tr><td> `EvalErrorWall(bool flag=true)` <td> When parameters are in disallowed regions (e.g. PDF is negative), return very high value to fitter
1017 * to force it out of that region. This can, however, mean that the fitter gets lost in this region. If
1018 * this happens, try switching it off.
1019 * <tr><td> `RecoverFromUndefinedRegions(double strength)` <td> When PDF is invalid (e.g. parameter in undefined region), try to direct minimiser away from that region.
1020 * `strength` controls the magnitude of the penalty term. Leaving out this argument defaults to 10. Switch off with `strength = 0.`.
1021 *
1022 * <tr><td> `SumW2Error(bool flag)` <td> Apply correction to errors and covariance matrix.
1023 * This uses two covariance matrices, one with the weights, the other with squared weights,
1024 * to obtain the correct errors for weighted likelihood fits. If this option is activated, the
1025 * corrected covariance matrix is calculated as \f$ V_\mathrm{corr} = V C^{-1} V \f$, where \f$ V \f$ is the original
1026 * covariance matrix and \f$ C \f$ is the inverse of the covariance matrix calculated using the
1027 * squared weights. This allows to switch between two interpretations of errors:
1028 * <table>
1029 * <tr><th> SumW2Error <th> Interpretation
1030 * <tr><td> true <td> The errors reflect the uncertainty of the Monte Carlo simulation.
1031 * Use this if you want to know how much accuracy you can get from the available Monte Carlo statistics.
1032 *
1033 * **Example**: Simulation with 1000 events, the average weight is 0.1.
1034 * The errors are as big as if one fitted to 1000 events.
1035 * <tr><td> false <td> The errors reflect the errors of a dataset, which is as big as the sum of weights.
1036 * Use this if you want to know what statistical errors you would get if you had a dataset with as many
1037 * events as the (weighted) Monte Carlo simulation represents.
1038 *
1039 * **Example** (Data as above):
1040 * The errors are as big as if one fitted to 100 events.
1041 * </table>
1042 * \note If the `SumW2Error` correction is enabled, the covariance matrix quality stored in the RooFitResult
1043 * object will be the minimum of the original covariance matrix quality and the quality of the covariance
1044 * matrix calculated with the squared weights.
1045 * <tr><td> `AsymptoticError()` <td> Use the asymptotically correct approach to estimate errors in the presence of weights.
1046 * This is slower but more accurate than `SumW2Error`. See also https://arxiv.org/abs/1911.01303).
1047 This option even correctly implements the case of extended likelihood fits
1048 (see this [writeup on extended weighted fits](https://root.cern/files/extended_weighted_fits.pdf) that complements the paper linked before).
1049 * <tr><td> `PrefitDataFraction(double fraction)`
1050 * <td> Runs a prefit on a small dataset of size fraction*(actual data size). This can speed up fits
1051 * by finding good starting values for the parameters for the actual fit.
1052 * \warning Prefitting may give bad results when used in binned analysis.
1053 *
1054 * <tr><th><th> Options to control informational output
1055 * <tr><td> `Verbose(bool flag)` <td> Flag controls if verbose output is printed (NLL, parameter changes during fit).
1056 * <tr><td> `Timer(bool flag)` <td> Time CPU and wall clock consumption of fit steps, off by default.
1057 * <tr><td> `PrintLevel(Int_t level)` <td> Set Minuit print level (-1 to 3, default is 1). At -1 all RooFit informational messages are suppressed as well.
1058 * See RooMinimizer::PrintLevel for the meaning of the levels.
1059 * <tr><td> `Warnings(bool flag)` <td> Enable or disable MINUIT warnings (enabled by default)
1060 * <tr><td> `PrintEvalErrors(Int_t numErr)` <td> Control number of p.d.f evaluation errors printed per likelihood evaluation.
1061 * A negative value suppresses output completely, a zero value will only print the error count per p.d.f component,
1062 * a positive value will print details of each error up to `numErr` messages per p.d.f component.
1063 * <tr><td> `Parallelize(Int_t nWorkers)` <td> Control global parallelization settings. Arguments 1 and above enable the use of RooFit's parallel minimization
1064 * backend and uses the number given as the number of workers to use in the parallelization. -1 also enables
1065 * RooFit's parallel minimization backend, and sets the number of workers to the number of available processes.
1066 * 0 disables this feature.
1067 * In case parallelization is requested, this option implies `ModularL(true)` in the internal call to the NLL creation method.
1068 * <tr><td> `ParallelGradientOptions(bool enable=true, int orderStrategy=0, int chainFactor=1)` <td> **Experimental** - Control gradient parallelization settings. The first argument
1069 * only disables or enables gradient parallelization, this is on by default.
1070 * The second argument determines the internal partial derivative calculation
1071 * ordering strategy. The third argument determines the number of partial
1072 * derivatives that are executed per task package on each worker.
1073 * <tr><td> `ParallelDescentOptions(bool enable=false, int splitStrategy=0, int numSplits=4)` <td> **Experimental** - Control settings related to the parallelization of likelihoods
1074 * outside of the gradient calculation but in the minimization, most prominently
1075 * in the linesearch step. The first argument this disables or enables likelihood
1076 * parallelization. The second argument determines whether to split the task batches
1077 * per event or per likelihood component. And the third argument how many events or
1078 * respectively components to include in each batch.
1079 * <tr><td> `TimingAnalysis(bool flag)` <td> **Experimental** - Log timings. This feature logs timings with NewStyle likelihoods on multiple processes simultaneously
1080 * and outputs the timings at the end of a run to json log files, which can be analyzed with the
1081 * `RooFit::MultiProcess::HeatmapAnalyzer`. Only works with simultaneous likelihoods.
1082 * </table>
1083 */
1084
1085
1086/** @brief Protected implementation of the likelihood fitting routine.
1087 *
1088 * This virtual function can be overridden in case you want to change the likelihood fitting logic for custom PDFs.
1089 *
1090 * \note Never call this function directly. Instead, call RooAbsPdf::fitTo().
1091 */
1092
1093std::unique_ptr<RooFitResult> RooAbsPdf::fitToImpl(RooAbsData& data, const RooLinkedList& cmdList)
1094{
1095 return RooFit::FitHelpers::fitTo(*this, data, cmdList, false);
1096}
1097
1098
1099////////////////////////////////////////////////////////////////////////////////
1100/// Print value of p.d.f, also print normalization integral that was last used, if any
1101
1102void RooAbsPdf::printValue(ostream& os) const
1103{
1104 // silent warning messages coming when evaluating a RooAddPdf without a normalization set
1106
1107 getVal() ;
1108
1109 if (_norm) {
1110 os << getVal() << "/" << _norm->getVal() ;
1111 } else {
1112 os << getVal();
1113 }
1114}
1115
1116
1117
1118////////////////////////////////////////////////////////////////////////////////
1119/// Print multi line detailed information of this RooAbsPdf
1120
1121void RooAbsPdf::printMultiline(ostream& os, Int_t contents, bool verbose, TString indent) const
1122{
1123 RooAbsReal::printMultiline(os,contents,verbose,indent);
1124 os << indent << "--- RooAbsPdf ---" << std::endl;
1125 os << indent << "Cached value = " << _value << std::endl ;
1126 if (_norm) {
1127 os << indent << " Normalization integral: " << std::endl ;
1128 auto moreIndent = std::string(indent.Data()) + " " ;
1130 }
1131}
1132
1133
1134
1135////////////////////////////////////////////////////////////////////////////////
1136/// Return a binned generator context
1137
1139{
1140 return new RooBinnedGenContext(*this,vars,nullptr,nullptr,verbose) ;
1141}
1142
1143
1144////////////////////////////////////////////////////////////////////////////////
1145/// Interface function to create a generator context from a p.d.f. This default
1146/// implementation returns a 'standard' context that works for any p.d.f
1147
1149 const RooArgSet* auxProto, bool verbose) const
1150{
1151 return new RooGenContext(*this,vars,prototype,auxProto,verbose) ;
1152}
1153
1154
1155////////////////////////////////////////////////////////////////////////////////
1156
1158 bool verbose, bool autoBinned, const char* binnedTag) const
1159{
1160 if (prototype || (auxProto && !auxProto->empty())) {
1161 return genContext(vars,prototype,auxProto,verbose);
1162 }
1163
1164 RooAbsGenContext *context(nullptr) ;
1165 if ( (autoBinned && isBinnedDistribution(vars)) || ( binnedTag && strlen(binnedTag) && (getAttribute(binnedTag)||string(binnedTag)=="*"))) {
1166 context = binnedGenContext(vars,verbose) ;
1167 } else {
1168 context= genContext(vars,nullptr,nullptr,verbose);
1169 }
1170 return context ;
1171}
1172
1173
1174
1175////////////////////////////////////////////////////////////////////////////////
1176/// Generate a new dataset containing the specified variables with events sampled from our distribution.
1177/// Generate the specified number of events or expectedEvents() if not specified.
1178/// \param[in] whatVars Choose variables in which to generate events. Variables not listed here will remain
1179/// constant and not be used for event generation.
1180/// \param[in] arg1,arg2,arg3,arg4,arg5,arg6 Optional RooCmdArg() to change behaviour of generate().
1181/// \return RooDataSet *, owned by caller.
1182///
1183/// Any variables of this PDF that are not in whatVars will use their
1184/// current values and be treated as fixed parameters. Returns zero
1185/// in case of an error.
1186///
1187/// <table>
1188/// <tr><th> Type of CmdArg <th> Effect on generate
1189/// <tr><td> `Name(const char* name)` <td> Name of the output dataset
1190/// <tr><td> `Verbose(bool flag)` <td> Print informational messages during event generation
1191/// <tr><td> `NumEvents(int nevt)` <td> Generate specified number of events
1192/// <tr><td> `Extended()` <td> If no number of events to be generated is given,
1193/// use expected number of events from extended likelihood term.
1194/// This evidently only works for extended PDFs.
1195/// <tr><td> `GenBinned(const char* tag)` <td> Use binned generation for all component pdfs that have 'setAttribute(tag)' set
1196/// <tr><td> `AutoBinned(bool flag)` <td> Automatically deploy binned generation for binned distributions (e.g. RooHistPdf, sums and products of
1197/// RooHistPdfs etc)
1198/// \note Datasets that are generated in binned mode are returned as weighted unbinned datasets. This means that
1199/// for each bin, there will be one event in the dataset with a weight corresponding to the (possibly randomised) bin content.
1200///
1201///
1202/// <tr><td> `AllBinned()` <td> As above, but for all components.
1203/// \note The notion of components is only meaningful for simultaneous PDFs
1204/// as binned generation is always executed at the top-level node for a regular
1205/// PDF, so for those it only mattes that the top-level node is tagged.
1206///
1207/// <tr><td> ProtoData(const RooAbsData& data, bool randOrder)
1208/// <td> Use specified dataset as prototype dataset. If randOrder in ProtoData() is set to true,
1209/// the order of the events in the dataset will be read in a random order if the requested
1210/// number of events to be generated does not match the number of events in the prototype dataset.
1211/// \note If ProtoData() is used, the specified existing dataset as a prototype: the new dataset will contain
1212/// the same number of events as the prototype (unless otherwise specified), and any prototype variables not in
1213/// whatVars will be copied into the new dataset for each generated event and also used to set our PDF parameters.
1214/// The user can specify a number of events to generate that will override the default. The result is a
1215/// copy of the prototype dataset with only variables in whatVars randomized. Variables in whatVars that
1216/// are not in the prototype will be added as new columns to the generated dataset.
1217///
1218/// </table>
1219///
1220/// #### Accessing the underlying event generator
1221/// Depending on the fit model (if it is difficult to sample), it may be necessary to change generator settings.
1222/// For the default generator (RooFoamGenerator), the number of samples or cells could be increased by e.g. using
1223/// myPdf->specialGeneratorConfig()->getConfigSection("RooFoamGenerator").setRealValue("nSample",1e4);
1224///
1225/// The foam generator e.g. has the following config options:
1226/// - nCell[123N]D
1227/// - nSample
1228/// - chatLevel
1229/// \see rf902_numgenconfig.C
1230
1232 const RooCmdArg& arg3,const RooCmdArg& arg4, const RooCmdArg& arg5,const RooCmdArg& arg6)
1233{
1234 // Select the pdf-specific commands
1235 RooCmdConfig pc("RooAbsPdf::generate(" + std::string(GetName()) + ")");
1236 pc.defineObject("proto","PrototypeData",0,nullptr) ;
1237 pc.defineString("dsetName","Name",0,"") ;
1238 pc.defineInt("randProto","PrototypeData",0,0) ;
1239 pc.defineInt("resampleProto","PrototypeData",1,0) ;
1240 pc.defineInt("verbose","Verbose",0,0) ;
1241 pc.defineInt("extended","Extended",0,0) ;
1242 pc.defineInt("nEvents","NumEvents",0,0) ;
1243 pc.defineInt("autoBinned","AutoBinned",0,1) ;
1244 pc.defineInt("expectedData","ExpectedData",0,0) ;
1245 pc.defineDouble("nEventsD","NumEventsD",0,-1.) ;
1246 pc.defineString("binnedTag","GenBinned",0,"") ;
1247 pc.defineMutex("GenBinned","ProtoData") ;
1248 pc.defineMutex("Extended", "NumEvents");
1249
1250 // Process and check varargs
1252 if (!pc.ok(true)) {
1253 return nullptr;
1254 }
1255
1256 // Decode command line arguments
1257 RooDataSet* protoData = static_cast<RooDataSet*>(pc.getObject("proto",nullptr)) ;
1258 const char* dsetName = pc.getString("dsetName") ;
1259 bool verbose = pc.getInt("verbose") ;
1260 bool randProto = pc.getInt("randProto") ;
1261 bool resampleProto = pc.getInt("resampleProto") ;
1262 bool extended = pc.getInt("extended") ;
1263 bool autoBinned = pc.getInt("autoBinned") ;
1264 const char* binnedTag = pc.getString("binnedTag") ;
1265 Int_t nEventsI = pc.getInt("nEvents") ;
1266 double nEventsD = pc.getInt("nEventsD") ;
1267 //bool verbose = pc.getInt("verbose") ;
1268 bool expectedData = pc.getInt("expectedData") ;
1269
1270 double nEvents = (nEventsD>0) ? nEventsD : double(nEventsI);
1271
1272 // Force binned mode for expected data mode
1273 if (expectedData) {
1274 binnedTag="*" ;
1275 }
1276
1277 if (extended) {
1278 if (nEvents == 0) nEvents = expectedEvents(&whatVars);
1279 } else if (nEvents==0) {
1280 cxcoutI(Generation) << "No number of events specified , number of events generated is "
1281 << GetName() << "::expectedEvents() = " << expectedEvents(&whatVars)<< std::endl ;
1282 }
1283
1284 if (extended && protoData && !randProto) {
1285 cxcoutI(Generation) << "WARNING Using generator option Extended() (Poisson distribution of #events) together "
1286 << "with a prototype dataset implies incomplete sampling or oversampling of proto data. "
1287 << "Set randomize flag in ProtoData() option to randomize prototype dataset order and thus "
1288 << "to randomize the set of over/undersampled prototype events for each generation cycle." << std::endl ;
1289 }
1290
1291
1292 // Forward to appropriate implementation
1293 std::unique_ptr<RooDataSet> data;
1294 if (protoData) {
1295 data = std::unique_ptr<RooDataSet>{generate(whatVars,*protoData,Int_t(nEvents),verbose,randProto,resampleProto)};
1296 } else {
1297 data = std::unique_ptr<RooDataSet>{generate(whatVars,nEvents,verbose,autoBinned,binnedTag,expectedData, extended)};
1298 }
1299
1300 // Rename dataset to given name if supplied
1301 if (dsetName && strlen(dsetName)>0) {
1302 data->SetName(dsetName) ;
1303 }
1304
1305 return RooFit::makeOwningPtr(std::move(data));
1306}
1307
1308
1309
1310
1311
1312
1313////////////////////////////////////////////////////////////////////////////////
1314/// \note This method does not perform any generation. To generate according to generations specification call RooAbsPdf::generate(RooAbsPdf::GenSpec&) const
1315///
1316/// Details copied from RooAbsPdf::generate():
1317/// --------------------------------------------
1318/// \copydetails RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&)
1319
1321 const RooCmdArg& arg1,const RooCmdArg& arg2,
1322 const RooCmdArg& arg3,const RooCmdArg& arg4,
1323 const RooCmdArg& arg5,const RooCmdArg& arg6)
1324{
1325
1326 // Select the pdf-specific commands
1327 RooCmdConfig pc("RooAbsPdf::generate(" + std::string(GetName()) + ")");
1328 pc.defineObject("proto","PrototypeData",0,nullptr) ;
1329 pc.defineString("dsetName","Name",0,"") ;
1330 pc.defineInt("randProto","PrototypeData",0,0) ;
1331 pc.defineInt("resampleProto","PrototypeData",1,0) ;
1332 pc.defineInt("verbose","Verbose",0,0) ;
1333 pc.defineInt("extended","Extended",0,0) ;
1334 pc.defineInt("nEvents","NumEvents",0,0) ;
1335 pc.defineInt("autoBinned","AutoBinned",0,1) ;
1336 pc.defineString("binnedTag","GenBinned",0,"") ;
1337 pc.defineMutex("GenBinned","ProtoData") ;
1338
1339
1340 // Process and check varargs
1342 if (!pc.ok(true)) {
1343 return nullptr ;
1344 }
1345
1346 // Decode command line arguments
1347 RooDataSet* protoData = static_cast<RooDataSet*>(pc.getObject("proto",nullptr)) ;
1348 const char* dsetName = pc.getString("dsetName") ;
1349 Int_t nEvents = pc.getInt("nEvents") ;
1350 bool verbose = pc.getInt("verbose") ;
1351 bool randProto = pc.getInt("randProto") ;
1352 bool resampleProto = pc.getInt("resampleProto") ;
1353 bool extended = pc.getInt("extended") ;
1354 bool autoBinned = pc.getInt("autoBinned") ;
1355 const char* binnedTag = pc.getString("binnedTag") ;
1356
1358
1359 return new GenSpec(cx,whatVars,protoData,nEvents,extended,randProto,resampleProto,dsetName) ;
1360}
1361
1362
1363////////////////////////////////////////////////////////////////////////////////
1364/// If many identical generation requests
1365/// are needed, e.g. in toy MC studies, it is more efficient to use the prepareMultiGen()/generate()
1366/// combination than calling the standard generate() multiple times as
1367/// initialization overhead is only incurred once.
1368
1370{
1371 //Int_t nEvt = spec._extended ? RooRandom::randomGenerator()->Poisson(spec._nGen) : spec._nGen ;
1372 //Int_t nEvt = spec._extended ? RooRandom::randomGenerator()->Poisson(spec._nGen==0?expectedEvents(spec._whatVars):spec._nGen) : spec._nGen ;
1373 //Int_t nEvt = spec._nGen == 0 ? RooRandom::randomGenerator()->Poisson(expectedEvents(spec._whatVars)) : spec._nGen;
1374
1375 double nEvt = spec._nGen == 0 ? expectedEvents(spec._whatVars) : spec._nGen;
1376
1377 std::unique_ptr<RooDataSet> ret{generate(*spec._genContext,spec._whatVars,spec._protoData, nEvt,false,spec._randProto,spec._resampleProto,
1378 spec._init,spec._extended)};
1379 spec._init = true ;
1380 return RooFit::makeOwningPtr(std::move(ret));
1381}
1382
1383
1384
1385
1386
1387////////////////////////////////////////////////////////////////////////////////
1388/// Generate a new dataset containing the specified variables with
1389/// events sampled from our distribution.
1390///
1391/// \param[in] whatVars Generate a dataset with the variables (and categories) in this set.
1392/// Any variables of this PDF that are not in `whatVars` will use their
1393/// current values and be treated as fixed parameters.
1394/// \param[in] nEvents Generate the specified number of events or else try to use
1395/// expectedEvents() if nEvents <= 0 (default).
1396/// \param[in] verbose Show which generator strategies are being used.
1397/// \param[in] autoBinned If original distribution is binned, return bin centers and randomise weights
1398/// instead of generating single events.
1399/// \param[in] binnedTag
1400/// \param[in] expectedData Call setExpectedData on the genContext.
1401/// \param[in] extended Randomise number of events generated according to Poisson(nEvents). Only useful
1402/// if PDF is extended.
1403/// \return New dataset. Returns zero in case of an error. The caller takes ownership of the returned
1404/// dataset.
1405
1406RooFit::OwningPtr<RooDataSet> RooAbsPdf::generate(const RooArgSet &whatVars, double nEvents, bool verbose, bool autoBinned, const char* binnedTag, bool expectedData, bool extended) const
1407{
1408 if (nEvents==0 && extendMode()==CanNotBeExtended) {
1409 return RooFit::makeOwningPtr(std::make_unique<RooDataSet>("emptyData","emptyData",whatVars));
1410 }
1411
1412 // Request for binned generation
1413 std::unique_ptr<RooAbsGenContext> context{autoGenContext(whatVars,nullptr,nullptr,verbose,autoBinned,binnedTag)};
1414 if (expectedData) {
1415 context->setExpectedData(true) ;
1416 }
1417
1418 std::unique_ptr<RooDataSet> generated;
1419 if(nullptr != context && context->isValid()) {
1420 generated = std::unique_ptr<RooDataSet>{context->generate(nEvents, false, extended)};
1421 }
1422 else {
1423 coutE(Generation) << "RooAbsPdf::generate(" << GetName() << ") cannot create a valid context" << std::endl;
1424 }
1425 return RooFit::makeOwningPtr(std::move(generated));
1426}
1427
1428
1429
1430
1431////////////////////////////////////////////////////////////////////////////////
1432/// Internal method
1433
1434std::unique_ptr<RooDataSet> RooAbsPdf::generate(RooAbsGenContext& context, const RooArgSet &whatVars, const RooDataSet *prototype,
1435 double nEvents, bool /*verbose*/, bool randProtoOrder, bool resampleProto,
1436 bool skipInit, bool extended) const
1437{
1438 if (nEvents==0 && (prototype==nullptr || prototype->numEntries()==0)) {
1439 return std::make_unique<RooDataSet>("emptyData","emptyData",whatVars);
1440 }
1441
1442 std::unique_ptr<RooDataSet> generated;
1443
1444 // Resampling implies reshuffling in the implementation
1445 if (resampleProto) {
1447 }
1448
1449 if (randProtoOrder && prototype && prototype->numEntries()!=nEvents) {
1450 coutI(Generation) << "RooAbsPdf::generate (Re)randomizing event order in prototype dataset (Nevt=" << nEvents << ")" << std::endl ;
1451 Int_t* newOrder = randomizeProtoOrder(prototype->numEntries(),Int_t(nEvents),resampleProto) ;
1452 context.setProtoDataOrder(newOrder) ;
1453 delete[] newOrder ;
1454 }
1455
1456 if(context.isValid()) {
1457 generated = std::unique_ptr<RooDataSet>{context.generate(nEvents,skipInit,extended)};
1458 }
1459 else {
1460 coutE(Generation) << "RooAbsPdf::generate(" << GetName() << ") do not have a valid generator context" << std::endl;
1461 }
1462 return generated;
1463}
1464
1465
1466
1467
1468////////////////////////////////////////////////////////////////////////////////
1469/// Generate a new dataset using a prototype dataset as a model,
1470/// with values of the variables in `whatVars` sampled from our distribution.
1471///
1472/// \param[in] whatVars Generate for these variables.
1473/// \param[in] prototype Use this dataset
1474/// as a prototype: the new dataset will contain the same number of
1475/// events as the prototype (by default), and any prototype variables not in
1476/// whatVars will be copied into the new dataset for each generated
1477/// event and also used to set our PDF parameters. The user can specify a
1478/// number of events to generate that will override the default. The result is a
1479/// copy of the prototype dataset with only variables in whatVars
1480/// randomized. Variables in whatVars that are not in the prototype
1481/// will be added as new columns to the generated dataset.
1482/// \param[in] nEvents Number of events to generate. Defaults to 0, which means number
1483/// of event in prototype dataset.
1484/// \param[in] verbose Show which generator strategies are being used.
1485/// \param[in] randProtoOrder Randomise order of retrieval of events from proto dataset.
1486/// \param[in] resampleProto Resample from the proto dataset.
1487/// \return The new dataset. Returns zero in case of an error. The caller takes ownership of the
1488/// returned dataset.
1489
1491 Int_t nEvents, bool verbose, bool randProtoOrder, bool resampleProto) const
1492{
1493 std::unique_ptr<RooAbsGenContext> context{genContext(whatVars,&prototype,nullptr,verbose)};
1494 if (context) {
1496 }
1497 coutE(Generation) << "RooAbsPdf::generate(" << GetName() << ") ERROR creating generator context" << std::endl ;
1498 return nullptr;
1499}
1500
1501
1502
1503////////////////////////////////////////////////////////////////////////////////
1504/// Return lookup table with randomized order for nProto prototype events.
1505
1507{
1508 // Make output list
1509 Int_t* lut = new Int_t[nProto] ;
1510
1511 // Randomly sample input list into output list
1512 if (!resampleProto) {
1513 // In this mode, randomization is a strict reshuffle of the order
1514 std::iota(lut, lut + nProto, 0); // fill the vector with 0 to nProto - 1
1515 // Shuffle code taken from https://en.cppreference.com/w/cpp/algorithm/random_shuffle.
1516 // The std::random_shuffle function was deprecated in C++17. We could have
1517 // used std::shuffle instead, but this is not straight-forward to use with
1518 // RooRandom::integer() and we didn't want to change the random number
1519 // generator. It might cause unwanted effects like reproducibility problems.
1520 for (int i = nProto-1; i > 0; --i) {
1521 std::swap(lut[i], lut[RooRandom::integer(i+1)]);
1522 }
1523 } else {
1524 // In this mode, we resample, i.e. events can be used more than once
1525 std::generate(lut, lut + nProto, [&]{ return RooRandom::integer(nProto); });
1526 }
1527
1528
1529 return lut ;
1530}
1531
1532
1533
1534////////////////////////////////////////////////////////////////////////////////
1535/// Load generatedVars with the subset of directVars that we can generate events for,
1536/// and return a code that specifies the generator algorithm we will use. A code of
1537/// zero indicates that we cannot generate any of the directVars (in this case, nothing
1538/// should be added to generatedVars). Any non-zero codes will be passed to our generateEvent()
1539/// implementation, but otherwise its value is arbitrary. The default implementation of
1540/// this method returns zero. Subclasses will usually implement this method using the
1541/// matchArgs() methods to advertise the algorithms they provide.
1542
1543Int_t RooAbsPdf::getGenerator(const RooArgSet &/*directVars*/, RooArgSet &/*generatedVars*/, bool /*staticInitOK*/) const
1544{
1545 return 0 ;
1546}
1547
1548
1549
1550////////////////////////////////////////////////////////////////////////////////
1551/// Interface for one-time initialization to setup the generator for the specified code.
1552
1554{
1555}
1556
1557
1558
1559////////////////////////////////////////////////////////////////////////////////
1560/// Interface for generation of an event using the algorithm
1561/// corresponding to the specified code. The meaning of each code is
1562/// defined by the getGenerator() implementation. The default
1563/// implementation does nothing.
1564
1566{
1567}
1568
1569
1570
1571////////////////////////////////////////////////////////////////////////////////
1572/// Check if given observable can be safely generated using the
1573/// pdfs internal generator mechanism (if that existsP). Observables
1574/// on which a PDF depends via more than route are not safe
1575/// for use with internal generators because they introduce
1576/// correlations not known to the internal generator
1577
1579{
1580 // Arg must be direct server of self
1581 if (!findServer(arg.GetName())) return false ;
1582
1583 // There must be no other dependency routes
1584 for (const auto server : _serverList) {
1585 if(server == &arg) continue;
1586 if(server->dependsOn(arg)) {
1587 return false ;
1588 }
1589 }
1590
1591 return true ;
1592}
1593
1594
1595////////////////////////////////////////////////////////////////////////////////
1596/// Generate a new dataset containing the specified variables with events sampled from our distribution.
1597/// \param[in] whatVars Choose variables in which to generate events. Variables not listed here will remain
1598/// constant and not be used for event generation
1599/// \param[in] arg1,arg2,arg3,arg4,arg5,arg6 Optional RooCmdArg to change behaviour of generateBinned()
1600/// \return RooDataHist *, to be managed by caller.
1601///
1602/// Generate the specified number of events or expectedEvents() if not specified.
1603///
1604/// Any variables of this PDF that are not in whatVars will use their
1605/// current values and be treated as fixed parameters. Returns zero
1606/// in case of an error. The caller takes ownership of the returned
1607/// dataset.
1608///
1609/// The following named arguments are supported
1610/// | Type of CmdArg | Effect on generation
1611/// |---------------------------|-----------------------
1612/// | `Name(const char* name)` | Name of the output dataset
1613/// | `Verbose(bool flag)` | Print informational messages during event generation
1614/// | `NumEvents(int nevt)` | Generate specified number of events
1615/// | `Extended()` | The actual number of events generated will be sampled from a Poisson distribution with mu=nevt. This can be *much* faster for peaked PDFs, but the number of events is not exactly what was requested.
1616/// | `ExpectedData()` | Return a binned dataset _without_ statistical fluctuations (also aliased as Asimov())
1617///
1618
1620 const RooCmdArg& arg3,const RooCmdArg& arg4, const RooCmdArg& arg5,const RooCmdArg& arg6) const
1621{
1622
1623 // Select the pdf-specific commands
1624 RooCmdConfig pc("RooAbsPdf::generate(" + std::string(GetName()) + ")");
1625 pc.defineString("dsetName","Name",0,"") ;
1626 pc.defineInt("verbose","Verbose",0,0) ;
1627 pc.defineInt("extended","Extended",0,0) ;
1628 pc.defineInt("nEvents","NumEvents",0,0) ;
1629 pc.defineDouble("nEventsD","NumEventsD",0,-1.) ;
1630 pc.defineInt("expectedData","ExpectedData",0,0) ;
1631
1632 // Process and check varargs
1634 if (!pc.ok(true)) {
1635 return nullptr;
1636 }
1637
1638 // Decode command line arguments
1639 double nEvents = pc.getDouble("nEventsD") ;
1640 if (nEvents<0) {
1641 nEvents = pc.getInt("nEvents") ;
1642 }
1643 //bool verbose = pc.getInt("verbose") ;
1644 bool extended = pc.getInt("extended") ;
1645 bool expectedData = pc.getInt("expectedData") ;
1646 const char* dsetName = pc.getString("dsetName") ;
1647
1648 if (extended) {
1649 //nEvents = (nEvents==0?Int_t(expectedEvents(&whatVars)+0.5):nEvents) ;
1650 nEvents = (nEvents==0 ? expectedEvents(&whatVars) :nEvents) ;
1651 cxcoutI(Generation) << " Extended mode active, number of events generated (" << nEvents << ") is Poisson fluctuation on "
1652 << GetName() << "::expectedEvents() = " << nEvents << std::endl ;
1653 // If Poisson fluctuation results in zero events, stop here
1654 if (nEvents==0) {
1655 return nullptr ;
1656 }
1657 } else if (nEvents==0) {
1658 cxcoutI(Generation) << "No number of events specified , number of events generated is "
1659 << GetName() << "::expectedEvents() = " << expectedEvents(&whatVars)<< std::endl ;
1660 }
1661
1662 // Forward to appropriate implementation
1664
1665 // Rename dataset to given name if supplied
1666 if (dsetName && strlen(dsetName)>0) {
1667 data->SetName(dsetName) ;
1668 }
1669
1670 return data;
1671}
1672
1673
1674
1675
1676////////////////////////////////////////////////////////////////////////////////
1677/// Generate a new dataset containing the specified variables with
1678/// events sampled from our distribution.
1679///
1680/// \param[in] whatVars Variables that values should be generated for.
1681/// \param[in] nEvents How many events to generate. If `nEvents <=0`, use the value returned by expectedEvents() as target.
1682/// \param[in] expectedData If set to true (false by default), the returned histogram returns the 'expected'
1683/// data sample, i.e. no statistical fluctuations are present.
1684/// \param[in] extended For each bin, generate Poisson(x, mu) events, where `mu` is chosen such that *on average*,
1685/// one would obtain `nEvents` events. This means that the true number of events will fluctuate around the desired value,
1686/// but the generation happens a lot faster.
1687/// Especially if the PDF is sharply peaked, the multinomial event generation necessary to generate *exactly* `nEvents` events can
1688/// be very slow.
1689///
1690/// The binning used for generation of events is the currently set binning for the variables.
1691/// It can e.g. be changed using
1692/// ```
1693/// x.setBins(15);
1694/// x.setRange(-5., 5.);
1695/// pdf.generateBinned(RooArgSet(x), 1000);
1696/// ```
1697///
1698/// Any variables of this PDF that are not in `whatVars` will use their
1699/// current values and be treated as fixed parameters.
1700/// \return RooDataHist* owned by the caller. Returns `nullptr` in case of an error.
1702{
1703 // Create empty RooDataHist
1704 auto hist = std::make_unique<RooDataHist>("genData","genData",whatVars);
1705
1706 // Scale to number of events and introduce Poisson fluctuations
1707 if (nEvents<=0) {
1708 if (!canBeExtended()) {
1709 coutE(InputArguments) << "RooAbsPdf::generateBinned(" << GetName() << ") ERROR: No event count provided and p.d.f does not provide expected number of events" << std::endl ;
1710 return nullptr;
1711 } else {
1712
1713 // Don't round in expectedData or extended mode
1714 if (expectedData || extended) {
1715 nEvents = expectedEvents(&whatVars) ;
1716 } else {
1717 nEvents = std::round(expectedEvents(&whatVars));
1718 }
1719 }
1720 }
1721
1722 // Sample p.d.f. distribution
1723 fillDataHist(hist.get(),&whatVars,1,true) ;
1724
1725 vector<int> histOut(hist->numEntries()) ;
1726 double histMax(-1) ;
1727 Int_t histOutSum(0) ;
1728 for (int i=0 ; i<hist->numEntries() ; i++) {
1729 hist->get(i) ;
1730 if (expectedData) {
1731
1732 // Expected data, multiply p.d.f by nEvents
1733 double w=hist->weight()*nEvents ;
1734 hist->set(i, w, sqrt(w));
1735
1736 } else if (extended) {
1737
1738 // Extended mode, set contents to Poisson(pdf*nEvents)
1739 double w = RooRandom::randomGenerator()->Poisson(hist->weight()*nEvents) ;
1740 hist->set(w,sqrt(w)) ;
1741
1742 } else {
1743
1744 // Regular mode, fill array of weights with Poisson(pdf*nEvents), but to not fill
1745 // histogram yet.
1746 if (hist->weight()>histMax) {
1747 histMax = hist->weight() ;
1748 }
1749 histOut[i] = RooRandom::randomGenerator()->Poisson(hist->weight()*nEvents) ;
1750 histOutSum += histOut[i] ;
1751 }
1752 }
1753
1754
1755 if (!expectedData && !extended) {
1756
1757 // Second pass for regular mode - Trim/Extend dataset to exact number of entries
1758
1759 // Calculate difference between what is generated so far and what is requested
1760 Int_t nEvtExtra = std::abs(Int_t(nEvents)-histOutSum) ;
1761 Int_t wgt = (histOutSum>nEvents) ? -1 : 1 ;
1762
1763 // Perform simple binned accept/reject procedure to get to exact event count
1764 std::size_t counter = 0;
1765 bool havePrintedInfo = false;
1766 while(nEvtExtra>0) {
1767
1768 Int_t ibinRand = RooRandom::randomGenerator()->Integer(hist->numEntries()) ;
1769 hist->get(ibinRand) ;
1770 double ranY = RooRandom::randomGenerator()->Uniform(histMax) ;
1771
1772 if (ranY<hist->weight()) {
1773 if (wgt==1) {
1774 histOut[ibinRand]++ ;
1775 } else {
1776 // If weight is negative, prior bin content must be at least 1
1777 if (histOut[ibinRand]>0) {
1778 histOut[ibinRand]-- ;
1779 } else {
1780 continue ;
1781 }
1782 }
1783 nEvtExtra-- ;
1784 }
1785
1786 if ((counter++ > 10*nEvents || nEvents > 1.E7) && !havePrintedInfo) {
1787 havePrintedInfo = true;
1788 coutP(Generation) << "RooAbsPdf::generateBinned(" << GetName() << ") Performing costly accept/reject sampling. If this takes too long, use "
1789 << "extended mode to speed up the process." << std::endl;
1790 }
1791 }
1792
1793 // Transfer working array to histogram
1794 for (int i=0 ; i<hist->numEntries() ; i++) {
1795 hist->get(i) ;
1796 hist->set(histOut[i],sqrt(1.0*histOut[i])) ;
1797 }
1798
1799 } else if (expectedData) {
1800
1801 // Second pass for expectedData mode -- Normalize to exact number of requested events
1802 // Minor difference may be present in first round due to difference between
1803 // bin average and bin integral in sampling bins
1804 double corr = nEvents/hist->sumEntries() ;
1805 for (int i=0 ; i<hist->numEntries() ; i++) {
1806 hist->get(i) ;
1807 hist->set(hist->weight()*corr,sqrt(hist->weight()*corr)) ;
1808 }
1809
1810 }
1811
1812 return RooFit::makeOwningPtr(std::move(hist));
1813}
1814
1815
1816
1817////////////////////////////////////////////////////////////////////////////////
1818/// Special generator interface for generation of 'global observables' -- for RooStats tools
1819
1824
1825namespace {
1826void removeRangeOverlap(std::vector<std::pair<double, double>>& ranges) {
1827 //Sort from left to right
1828 std::sort(ranges.begin(), ranges.end());
1829
1830 for (auto it = ranges.begin(); it != ranges.end(); ++it) {
1831 double& startL = it->first;
1832 double& endL = it->second;
1833
1834 for (auto innerIt = it+1; innerIt != ranges.end(); ++innerIt) {
1835 const double startR = innerIt->first;
1836 const double endR = innerIt->second;
1837
1838 if (startL <= startR && startR <= endL) {
1839 //Overlapping ranges, extend left one
1840 endL = std::max(endL, endR);
1841 *innerIt = make_pair(0., 0.);
1842 }
1843 }
1844 }
1845
1846 auto newEnd = std::remove_if(ranges.begin(), ranges.end(),
1847 [](const std::pair<double,double>& input){
1848 return input.first == input.second;
1849 });
1850 ranges.erase(newEnd, ranges.end());
1851}
1852}
1853
1854
1855////////////////////////////////////////////////////////////////////////////////
1856/// Plot (project) PDF on specified frame.
1857/// - If a PDF is plotted in an empty frame, it
1858/// will show a unit-normalized curve in the frame variable. When projecting a multi-
1859/// dimensional PDF onto the frame axis, hidden parameters are taken are taken at
1860/// their current value.
1861/// - If a PDF is plotted in a frame in which a dataset has already been plotted, it will
1862/// show a projection integrated over all variables that were present in the shown
1863/// dataset (except for the one on the x-axis). The normalization of the curve will
1864/// be adjusted to the event count of the plotted dataset. An informational message
1865/// will be printed for each projection step that is performed.
1866/// - If a PDF is plotted in a frame showing a dataset *after* a fit, the above happens,
1867/// but the PDF will be drawn and normalised only in the fit range. If this is not desired,
1868/// plotting and normalisation range can be overridden using Range() and NormRange() as
1869/// documented in the table below.
1870///
1871/// This function takes the following named arguments (for more arguments, see also
1872/// RooAbsReal::plotOn(RooPlot*,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,
1873/// const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,
1874/// const RooCmdArg&) const )
1875///
1876///
1877/// <table>
1878/// <tr><th> Type of argument <th> Controlling normalisation
1879/// <tr><td> `NormRange(const char* name)` <td> Calculate curve normalization w.r.t. specified range[s].
1880/// See the tutorial rf212_plottingInRanges_blinding.C
1881/// \note Setting a Range() by default also sets a NormRange() on the same range, meaning that the
1882/// PDF is plotted and normalised in the same range. Overriding this can be useful if the PDF was fit
1883/// in limited range[s] such as side bands, `NormRange("sidebandLeft,sidebandRight")`, but the PDF
1884/// should be drawn in the full range, `Range("")`.
1885///
1886/// <tr><td> `Normalization(double scale, ScaleType code)` <td> Adjust normalization by given scale factor.
1887/// Interpretation of number depends on code:
1888/// `RooAbsReal::Relative`: relative adjustment factor
1889/// `RooAbsReal::NumEvent`: scale to match given number of events.
1890///
1891/// <tr><th> Type of argument <th> Misc control
1892/// <tr><td> `Name(const chat* name)` <td> Give curve specified name in frame. Useful if curve is to be referenced later
1893/// <tr><td> `Asymmetry(const RooCategory& c)` <td> Show the asymmetry of the PDF in given two-state category
1894/// \f$ \frac{F(+)-F(-)}{F(+)+F(-)} \f$ rather than the PDF projection. Category must have two
1895/// states with indices -1 and +1 or three states with indices -1,0 and +1.
1896/// <tr><td> `ShiftToZero(bool flag)` <td> Shift entire curve such that lowest visible point is at exactly zero.
1897/// Mostly useful when plotting -log(L) or \f$ \chi^2 \f$ distributions
1898/// <tr><td> `AddTo(const char* name, double_t wgtSelf, double_t wgtOther)` <td> Create a projection of this PDF onto the x-axis, but
1899/// instead of plotting it directly, add it to an existing curve with given name (and relative weight factors).
1900/// <tr><td> `Components(const char* names)` <td> When plotting sums of PDFs, plot only the named components (*e.g.* only
1901/// the signal of a signal+background model).
1902/// <tr><td> `Components(const RooArgSet& compSet)` <td> As above, but pass a RooArgSet of the components themselves.
1903///
1904/// <tr><th> Type of argument <th> Projection control
1905/// <tr><td> `Slice(const RooArgSet& set)` <td> Override default projection behaviour by omitting observables listed
1906/// in set from the projection, i.e. by not integrating over these.
1907/// Slicing is usually only sensible in discrete observables, by e.g. creating a slice
1908/// of the PDF at the current value of the category observable.
1909/// <tr><td> `Slice(RooCategory& cat, const char* label)` <td> Override default projection behaviour by omitting the specified category
1910/// observable from the projection, i.e., by not integrating over all states of this category.
1911/// The slice is positioned at the given label value. Multiple Slice() commands can be given to specify slices
1912/// in multiple observables, e.g.
1913/// ```{.cpp}
1914/// pdf.plotOn(frame, Slice(tagCategory, "2tag"), Slice(jetCategory, "3jet"));
1915/// ```
1916/// <tr><td> `Project(const RooArgSet& set)` <td> Override default projection behaviour by projecting
1917/// over observables given in set, completely ignoring the default projection behavior. Advanced use only.
1918/// <tr><td> `ProjWData(const RooAbsData& d)` <td> Override default projection _technique_ (integration). For observables
1919/// present in given dataset projection of PDF is achieved by constructing an average over all observable
1920/// values in given set. Consult RooFit plotting tutorial for further explanation of meaning & use of this technique
1921/// <tr><td> `ProjWData(const RooArgSet& s, const RooAbsData& d)` <td> As above but only consider subset 's' of
1922/// observables in dataset 'd' for projection through data averaging
1923/// <tr><td> `ProjectionRange(const char* rn)` <td> When projecting the PDF onto the plot axis, it is usually integrated
1924/// over the full range of the invisible variables. The ProjectionRange overrides this.
1925/// This is useful if the PDF was fitted in a limited range in y, but it is now projected onto x. If
1926/// `ProjectionRange("<name of fit range>")` is passed, the projection is normalised correctly.
1927///
1928/// <tr><th> Type of argument <th> Plotting control
1929/// <tr><td> `LineStyle(Int_t style)` <td> Select line style by ROOT line style code, default is solid
1930/// <tr><td> `LineColor(Int_t color)` <td> Select line color by ROOT color code, default is blue
1931/// <tr><td> `LineWidth(Int_t width)` <td> Select line with in pixels, default is 3
1932/// <tr><td> `FillStyle(Int_t style)` <td> Select fill style, default is not filled. If a filled style is selected,
1933/// also use VLines() to add vertical downward lines at end of curve to ensure proper closure
1934/// <tr><td> `FillColor(Int_t color)` <td> Select fill color by ROOT color code
1935/// <tr><td> `Range(const char* name)` <td> Only draw curve in range defined by given name. Multiple comma-separated ranges can be given.
1936/// An empty string "" or `nullptr` means to use the default range of the variable.
1937/// <tr><td> `Range(double lo, double hi)` <td> Only draw curve in specified range
1938/// <tr><td> `VLines()` <td> Add vertical lines to y=0 at end points of curve
1939/// <tr><td> `Precision(double eps)` <td> Control precision of drawn curve w.r.t to scale of plot, default is 1e-3. A higher precision will
1940/// result in more and more densely spaced curve points. A negative precision value will disable
1941/// adaptive point spacing and restrict sampling to the grid point of points defined by the binning
1942/// of the plotted observable (recommended for expensive functions such as profile likelihoods)
1943/// <tr><td> `Invisible(bool flag)` <td> Add curve to frame, but do not display. Useful in combination AddTo()
1944/// <tr><td> `VisualizeError(const RooFitResult& fitres, double Z=1, bool linearMethod=true)`
1945/// <td> Visualize the uncertainty on the parameters, as given in fitres, at 'Z' sigma.
1946/// The linear method is fast but may not be accurate in the presence of strong correlations (~>0.9) and at Z>2 due to linear and Gaussian approximations made.
1947/// Intervals from the sampling method can be asymmetric, and may perform better in the presence of strong correlations, but may take (much) longer to calculate
1948/// \note To include the uncertainty from the expected number of events,
1949/// the Normalization() argument with `ScaleType` `RooAbsReal::RelativeExpected` has to be passed, e.g.
1950/// ```{.cpp}
1951/// pdf.plotOn(frame, VisualizeError(fitResult), Normalization(1.0, RooAbsReal::RelativeExpected));
1952/// ```
1953///
1954/// <tr><td> `VisualizeError(const RooFitResult& fitres, const RooArgSet& param, double Z=1, bool linearMethod=true)`
1955/// <td> Visualize the uncertainty on the subset of parameters 'param', as given in fitres, at 'Z' sigma
1956/// </table>
1957
1959{
1960
1961 // Pre-processing if p.d.f. contains a fit range and there is no command specifying one,
1962 // add a fit range as default range
1963 std::unique_ptr<RooCmdArg> plotRange;
1964 std::unique_ptr<RooCmdArg> normRange2;
1965 if (getStringAttribute("fitrange") && !cmdList.FindObject("Range") &&
1966 !cmdList.FindObject("RangeWithName")) {
1967 plotRange.reset(static_cast<RooCmdArg*>(RooFit::Range(getStringAttribute("fitrange")).Clone()));
1968 cmdList.Add(plotRange.get());
1969 }
1970
1971 if (getStringAttribute("fitrange") && !cmdList.FindObject("NormRange")) {
1972 normRange2.reset(static_cast<RooCmdArg*>(RooFit::NormRange(getStringAttribute("fitrange")).Clone()));
1973 cmdList.Add(normRange2.get());
1974 }
1975
1976 if (plotRange || normRange2) {
1977 coutI(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") p.d.f was fitted in a subrange and no explicit "
1978 << (plotRange?"Range()":"") << ((plotRange&&normRange2)?" and ":"")
1979 << (normRange2?"NormRange()":"") << " was specified. Plotting / normalising in fit range. To override, do one of the following"
1980 << "\n\t- Clear the automatic fit range attribute: <pdf>.removeStringAttribute(\"fitrange\");"
1981 << "\n\t- Explicitly specify the plotting range: Range(\"<rangeName>\")."
1982 << "\n\t- Explicitly specify where to compute the normalisation: NormRange(\"<rangeName>\")."
1983 << "\n\tThe default (full) range can be denoted with Range(\"\") / NormRange(\"\")."<< std::endl ;
1984 }
1985
1986 // Sanity checks
1987 if (plotSanityChecks(frame)) return frame ;
1988
1989 // Select the pdf-specific commands
1990 RooCmdConfig pc("RooAbsPdf::plotOn(" + std::string(GetName()) + ")");
1991 pc.defineDouble("scaleFactor","Normalization",0,1.0) ;
1992 pc.defineInt("scaleType","Normalization",0,Relative) ;
1993 pc.defineSet("compSet","SelectCompSet",0) ;
1994 pc.defineString("compSpec","SelectCompSpec",0) ;
1995 pc.defineObject("asymCat","Asymmetry",0) ;
1996 pc.defineDouble("rangeLo","Range",0,-999.) ;
1997 pc.defineDouble("rangeHi","Range",1,-999.) ;
1998 pc.defineString("rangeName","RangeWithName",0,"") ;
1999 pc.defineString("normRangeName","NormRange",0,"") ;
2000 pc.defineInt("rangeAdjustNorm","Range",0,0) ;
2001 pc.defineInt("rangeWNAdjustNorm","RangeWithName",0,0) ;
2002 pc.defineMutex("SelectCompSet","SelectCompSpec") ;
2003 pc.defineMutex("Range","RangeWithName") ;
2004 pc.allowUndefined() ; // unknowns may be handled by RooAbsReal
2005
2006 // Process and check varargs
2007 pc.process(cmdList) ;
2008 if (!pc.ok(true)) {
2009 return frame ;
2010 }
2011
2012 // Decode command line arguments
2013 ScaleType stype = (ScaleType) pc.getInt("scaleType") ;
2014 double scaleFactor = pc.getDouble("scaleFactor") ;
2015 const RooAbsCategoryLValue* asymCat = static_cast<const RooAbsCategoryLValue*>(pc.getObject("asymCat")) ;
2016 const char* compSpec = pc.getString("compSpec") ;
2017 const RooArgSet* compSet = pc.getSet("compSet");
2018 bool haveCompSel = ( (compSpec && strlen(compSpec)>0) || compSet) ;
2019
2020 // Suffix for curve name
2021 std::stringstream nameSuffix;
2022 if (compSpec && strlen(compSpec)>0) {
2023 nameSuffix << "_Comp[" << compSpec << "]";
2024 } else if (compSet) {
2025 nameSuffix << "_Comp[" << compSet->contentsString() << "]";
2026 }
2027
2028 // Remove PDF-only commands from command list
2029 RooCmdConfig::stripCmdList(cmdList,"SelectCompSet,SelectCompSpec") ;
2030
2031 // Adjust normalization, if so requested
2032 if (asymCat) {
2033 RooCmdArg cnsuffix("CurveNameSuffix", 0, 0, 0, 0, nameSuffix.str().c_str(), nullptr, nullptr, nullptr);
2034 cmdList.Add(&cnsuffix);
2035 return RooAbsReal::plotOn(frame, cmdList);
2036 }
2037
2038 // More sanity checks
2039 double nExpected(1) ;
2040 if (stype==RelativeExpected) {
2041 if (!canBeExtended()) {
2042 coutE(Plotting) << "RooAbsPdf::plotOn(" << GetName()
2043 << "): ERROR the 'Expected' scale option can only be used on extendable PDFs" << std::endl ;
2044 return frame ;
2045 }
2046 frame->updateNormVars(*frame->getPlotVar()) ;
2048 }
2049
2050 if (stype != Raw) {
2051
2052 if (frame->getFitRangeNEvt() && stype==Relative) {
2053
2054 bool hasCustomRange(false);
2055 bool adjustNorm(false);
2056
2057 std::vector<pair<double,double> > rangeLim;
2058
2059 // Retrieve plot range to be able to adjust normalization to data
2060 if (pc.hasProcessed("Range")) {
2061
2062 double rangeLo = pc.getDouble("rangeLo") ;
2063 double rangeHi = pc.getDouble("rangeHi") ;
2064 rangeLim.push_back(make_pair(rangeLo,rangeHi)) ;
2065 adjustNorm = pc.getInt("rangeAdjustNorm") ;
2067
2068 coutI(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") only plotting range ["
2069 << rangeLo << "," << rangeHi << "]" ;
2070 if (!pc.hasProcessed("NormRange")) {
2071 ccoutI(Plotting) << ", curve is normalized to data in " << (adjustNorm?"given":"full") << " range" << std::endl ;
2072 } else {
2073 ccoutI(Plotting) << std::endl ;
2074 }
2075
2076 nameSuffix << "_Range[" << rangeLo << "_" << rangeHi << "]";
2077
2078 } else if (pc.hasProcessed("RangeWithName")) {
2079
2080 for (const std::string& rangeNameToken : ROOT::Split(pc.getString("rangeName", "", false), ",")) {
2081 const char* thisRangeName = rangeNameToken.empty() ? nullptr : rangeNameToken.c_str();
2082 if (thisRangeName && !frame->getPlotVar()->hasRange(thisRangeName)) {
2083 coutE(Plotting) << "Range '" << rangeNameToken << "' not defined for variable '"
2084 << frame->getPlotVar()->GetName() << "'. Ignoring ..." << std::endl;
2085 continue;
2086 }
2087 rangeLim.push_back(frame->getPlotVar()->getRange(thisRangeName));
2088 }
2089 adjustNorm = pc.getInt("rangeWNAdjustNorm") ;
2091
2092 coutI(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") only plotting range '" << pc.getString("rangeName", "", false) << "'" ;
2093 if (!pc.hasProcessed("NormRange")) {
2094 ccoutI(Plotting) << ", curve is normalized to data in " << (adjustNorm?"given":"full") << " range" << std::endl ;
2095 } else {
2096 ccoutI(Plotting) << std::endl ;
2097 }
2098
2099 nameSuffix << "_Range[" << pc.getString("rangeName") << "]";
2100 }
2101 // Specification of a normalization range override those in a regular range
2102 if (pc.hasProcessed("NormRange")) {
2103 rangeLim.clear();
2104 for (const auto& rangeNameToken : ROOT::Split(pc.getString("normRangeName", "", false), ",")) {
2105 const char* thisRangeName = rangeNameToken.empty() ? nullptr : rangeNameToken.c_str();
2106 if (thisRangeName && !frame->getPlotVar()->hasRange(thisRangeName)) {
2107 coutE(Plotting) << "Range '" << rangeNameToken << "' not defined for variable '"
2108 << frame->getPlotVar()->GetName() << "'. Ignoring ..." << std::endl;
2109 continue;
2110 }
2111 rangeLim.push_back(frame->getPlotVar()->getRange(thisRangeName));
2112 }
2113 adjustNorm = true ;
2115 coutI(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") p.d.f. curve is normalized using explicit choice of ranges '" << pc.getString("normRangeName", "", false) << "'" << std::endl ;
2116
2117 nameSuffix << "_NormRange[" << pc.getString("rangeName") << "]";
2118 }
2119
2120 if (hasCustomRange && adjustNorm) {
2121 // If overlapping ranges were given, remove them now
2122 const std::size_t oldSize = rangeLim.size();
2124
2125 if (oldSize != rangeLim.size() && !pc.hasProcessed("NormRange")) {
2126 // User gave overlapping ranges. This leads to double-counting events and integrals, and must
2127 // therefore be avoided. If a NormRange has been given, the overlap is already gone.
2128 // It's safe to plot even with overlap now.
2129 coutE(Plotting) << "Requested plot/integration ranges overlap. For correct plotting, new ranges "
2130 "will be defined." << std::endl;
2131 auto plotVar = dynamic_cast<RooRealVar*>(frame->getPlotVar());
2132 assert(plotVar);
2133 std::string rangesNoOverlap;
2134 for (auto it = rangeLim.begin(); it != rangeLim.end(); ++it) {
2135 std::stringstream rangeName;
2136 rangeName << "Remove_overlap_range_" << it - rangeLim.begin();
2137 plotVar->setRange(rangeName.str().c_str(), it->first, it->second);
2138 if (!rangesNoOverlap.empty())
2139 rangesNoOverlap += ",";
2140 rangesNoOverlap += rangeName.str();
2141 }
2142
2143 auto rangeArg = static_cast<RooCmdArg*>(cmdList.FindObject("RangeWithName"));
2144 if (rangeArg) {
2145 rangeArg->setString(0, rangesNoOverlap.c_str());
2146 } else {
2147 plotRange = std::make_unique<RooCmdArg>(RooFit::Range(rangesNoOverlap.c_str()));
2148 cmdList.Add(plotRange.get());
2149 }
2150 }
2151
2152 double rangeNevt(0) ;
2153 for (const auto& riter : rangeLim) {
2154 double nevt= frame->getFitRangeNEvt(riter.first, riter.second);
2155 rangeNevt += nevt ;
2156 }
2157
2158 scaleFactor *= rangeNevt/nExpected ;
2159
2160 } else {
2161 // First, check if the PDF *can* be extended.
2162 if (this->canBeExtended()) {
2163 // If it can, get the expected events.
2164 const double nExp = expectedEvents(frame->getNormVars());
2165 if (nExp > 0) {
2166 // If the prediction is valid, use it for normalization.
2167 scaleFactor *= nExp / nExpected;
2168 } else {
2169 // If prediction is not valid (e.g. 0), fall back to data.
2170 scaleFactor *= frame->getFitRangeNEvt() / nExpected;
2171 }
2172 } else {
2173 // If the PDF can't be extended, just use the data.
2174 scaleFactor *= frame->getFitRangeNEvt() / nExpected;
2175 }
2176 }
2177 } else if (stype==RelativeExpected) {
2178 scaleFactor *= nExpected ;
2179 } else if (stype==NumEvent) {
2180 scaleFactor /= nExpected ;
2181 }
2182 scaleFactor *= frame->getFitRangeBinW() ;
2183 }
2184 frame->updateNormVars(*frame->getPlotVar()) ;
2185
2186 // Append overriding scale factor command at end of original command list
2187 RooCmdArg tmp = RooFit::Normalization(scaleFactor,Raw) ;
2188 tmp.setInt(1,1) ; // Flag this normalization command as created for internal use (so that VisualizeError can strip it)
2189 replaceOrAdd(cmdList, tmp);
2190
2191 // Was a component selected requested
2192 if (haveCompSel) {
2193
2194 // Get complete set of tree branch nodes
2197
2198 // Discard any non-RooAbsReal nodes
2199 for (const auto arg : branchNodeSet) {
2200 if (!dynamic_cast<RooAbsReal*>(arg)) {
2201 branchNodeSet.remove(*arg) ;
2202 }
2203 }
2204
2205 // Obtain direct selection
2206 std::unique_ptr<RooArgSet> dirSelNodes;
2207 if (compSet) {
2208 dirSelNodes = std::unique_ptr<RooArgSet>{branchNodeSet.selectCommon(*compSet)};
2209 } else {
2210 dirSelNodes = std::unique_ptr<RooArgSet>{branchNodeSet.selectByName(compSpec)};
2211 }
2212 if (!dirSelNodes->empty()) {
2213 coutI(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") directly selected PDF components: " << *dirSelNodes << std::endl ;
2214
2215 // Do indirect selection and activate both
2217 } else {
2218 if (compSet) {
2219 coutE(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") ERROR: component selection set " << *compSet << " does not match any components of p.d.f." << std::endl ;
2220 } else {
2221 coutE(Plotting) << "RooAbsPdf::plotOn(" << GetName() << ") ERROR: component selection expression '" << compSpec << "' does not select any components of p.d.f." << std::endl ;
2222 }
2223 return nullptr ;
2224 }
2225 }
2226
2227 RooCmdArg cnsuffix("CurveNameSuffix", 0, 0, 0, 0, nameSuffix.str().c_str(), nullptr, nullptr, nullptr);
2228 cmdList.Add(&cnsuffix);
2229
2231
2232 // Restore selection status ;
2233 if (haveCompSel) plotOnCompSelect(nullptr) ;
2234
2235 return ret ;
2236}
2237
2238
2239//_____________________________________________________________________________
2240/// Plot oneself on 'frame'. In addition to features detailed in RooAbsReal::plotOn(),
2241/// the scale factor for a PDF can be interpreted in three different ways. The interpretation
2242/// is controlled by ScaleType
2243/// ```
2244/// Relative - Scale factor is applied on top of PDF normalization scale factor
2245/// NumEvent - Scale factor is interpreted as a number of events. The surface area
2246/// under the PDF curve will match that of a histogram containing the specified
2247/// number of event
2248/// Raw - Scale factor is applied to the raw (projected) probability density.
2249/// Not too useful, option provided for completeness.
2250/// ```
2251// coverity[PASS_BY_VALUE]
2253{
2254
2255 // Sanity checks
2256 if (plotSanityChecks(frame)) return frame ;
2257
2258 // More sanity checks
2259 double nExpected(1) ;
2260 if (o.stype==RelativeExpected) {
2261 if (!canBeExtended()) {
2262 coutE(Plotting) << "RooAbsPdf::plotOn(" << GetName()
2263 << "): ERROR the 'Expected' scale option can only be used on extendable PDFs" << std::endl ;
2264 return frame ;
2265 }
2266 frame->updateNormVars(*frame->getPlotVar()) ;
2268 }
2269
2270 // Adjust normalization, if so requested
2271 if (o.stype != Raw) {
2272
2273 if (frame->getFitRangeNEvt() && o.stype==Relative) {
2274 // If non-default plotting range is specified, adjust number of events in fit range
2275 o.scaleFactor *= frame->getFitRangeNEvt()/nExpected ;
2276 } else if (o.stype==RelativeExpected) {
2277 o.scaleFactor *= nExpected ;
2278 } else if (o.stype==NumEvent) {
2279 o.scaleFactor /= nExpected ;
2280 }
2281 o.scaleFactor *= frame->getFitRangeBinW() ;
2282 }
2283 frame->updateNormVars(*frame->getPlotVar()) ;
2284
2285 return RooAbsReal::plotOn(frame,o) ;
2286}
2287
2288
2289
2290
2291////////////////////////////////////////////////////////////////////////////////
2292/// The following named arguments are supported
2293/// <table>
2294/// <tr><th> Type of CmdArg <th> Effect on parameter box
2295/// <tr><td> `Parameters(const RooArgSet& param)` <td> Only the specified subset of parameters will be shown. By default all non-constant parameters are shown.
2296/// <tr><td> `ShowConstants(bool flag)` <td> Also display constant parameters
2297/// <tr><td> `Format(const char* what,...)` <td> Parameter formatting options.
2298/// | Parameter | Format
2299/// | ---------------------- | --------------------------
2300/// | `const char* what` | Controls what is shown. "N" adds name (alternatively, "T" adds the title), "E" adds error, "A" shows asymmetric error, "U" shows unit, "H" hides the value
2301/// | `FixedPrecision(int n)`| Controls precision, set fixed number of digits
2302/// | `AutoPrecision(int n)` | Controls precision. Number of shown digits is calculated from error + n specified additional digits (1 is sensible default)
2303/// <tr><td> `Label(const chat* label)` <td> Add label to parameter box. Use `\n` for multi-line labels.
2304/// <tr><td> `Layout(double xmin, double xmax, double ymax)` <td> Specify relative position of left/right side of box and top of box.
2305/// Coordinates are given as position on the pad between 0 and 1.
2306/// The lower end of the box is calculated automatically from the number of lines in the box.
2307/// </table>
2308///
2309///
2310/// Example use:
2311/// ```
2312/// pdf.paramOn(frame, Label("fit result"), Format("NEU",AutoPrecision(1)) ) ;
2313/// ```
2314///
2315
2317 const RooCmdArg& arg3, const RooCmdArg& arg4, const RooCmdArg& arg5,
2318 const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8)
2319{
2320 // Stuff all arguments in a list
2322 cmdList.Add(const_cast<RooCmdArg*>(&arg1)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg2)) ;
2323 cmdList.Add(const_cast<RooCmdArg*>(&arg3)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg4)) ;
2324 cmdList.Add(const_cast<RooCmdArg*>(&arg5)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg6)) ;
2325 cmdList.Add(const_cast<RooCmdArg*>(&arg7)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg8)) ;
2326
2327 // Select the pdf-specific commands
2328 RooCmdConfig pc("RooAbsPdf::paramOn(" + std::string(GetName()) + ")");
2329 pc.defineString("label","Label",0,"") ;
2330 pc.defineDouble("xmin","Layout",0,0.65) ;
2331 pc.defineDouble("xmax","Layout",1,0.9) ;
2332 pc.defineInt("ymaxi","Layout",0,Int_t(0.9*10000)) ;
2333 pc.defineInt("showc","ShowConstants",0,0) ;
2334 pc.defineSet("params","Parameters",0,nullptr) ;
2335 pc.defineInt("dummy","FormatArgs",0,0) ;
2336
2337 // Process and check varargs
2338 pc.process(cmdList) ;
2339 if (!pc.ok(true)) {
2340 return frame ;
2341 }
2342
2343 auto formatCmd = static_cast<RooCmdArg const*>(cmdList.FindObject("FormatArgs")) ;
2344
2345 const char* label = pc.getString("label") ;
2346 double xmin = pc.getDouble("xmin") ;
2347 double xmax = pc.getDouble("xmax") ;
2348 double ymax = pc.getInt("ymaxi") / 10000. ;
2349 int showc = pc.getInt("showc") ;
2350
2351 // Decode command line arguments
2352 std::unique_ptr<RooArgSet> params{getParameters(frame->getNormVars())} ;
2353 if(RooArgSet* requestedParams = pc.getSet("params")) {
2354 params = std::unique_ptr<RooArgSet>{params->selectCommon(*requestedParams)};
2355 }
2356 paramOn(frame,*params,showc,label,xmin,xmax,ymax,formatCmd);
2357
2358 return frame ;
2359}
2360
2361
2362////////////////////////////////////////////////////////////////////////////////
2363/// Add a text box with the current parameter values and their errors to the frame.
2364/// Observables of this PDF appearing in the 'data' dataset will be omitted.
2365///
2366/// An optional label will be inserted if passed. Multi-line labels can be generated
2367/// by adding `\n` to the label string. Use 'sigDigits'
2368/// to modify the default number of significant digits printed. The 'xmin,xmax,ymax'
2369/// values specify the initial relative position of the text box in the plot frame.
2370
2371RooPlot* RooAbsPdf::paramOn(RooPlot* frame, const RooArgSet& params, bool showConstants, const char *label,
2372 double xmin, double xmax ,double ymax, const RooCmdArg* formatCmd)
2373{
2374
2375 // parse the options
2376 bool showLabel= (label != nullptr && strlen(label) > 0);
2377
2378 // calculate the box's size, adjusting for constant parameters
2379
2380 double ymin(ymax);
2381 double dy(0.06);
2382 for (const auto param : params) {
2383 auto var = static_cast<RooRealVar*>(param);
2384 if(showConstants || !var->isConstant()) ymin-= dy;
2385 }
2386
2387 std::string labelString = label;
2388 unsigned int numLines = std::count(labelString.begin(), labelString.end(), '\n') + 1;
2389 if (showLabel) ymin -= numLines * dy;
2390
2391 // create the box and set its options
2392 TPaveText *box= new TPaveText(xmin,ymax,xmax,ymin,"BRNDC");
2393 if(!box) return nullptr;
2394 box->SetName((std::string(GetName()) + "_paramBox").c_str());
2395 box->SetFillColor(0);
2396 box->SetBorderSize(0);
2397 box->SetTextAlign(12);
2398 box->SetTextSize(0.04F);
2399 box->SetFillStyle(0);
2400
2401 for (const auto param : params) {
2402 auto var = static_cast<const RooRealVar*>(param);
2403 if(var->isConstant() && !showConstants) continue;
2404
2405 box->AddText((formatCmd ? var->format(*formatCmd) : var->format(2, "NELU")).c_str());
2406 }
2407
2408 // add the optional label if specified
2409 if (showLabel) {
2410 for (const auto& line : ROOT::Split(label, "\n")) {
2411 box->AddText(line.c_str());
2412 }
2413 }
2414
2415 // Add box to frame
2416 frame->addObject(box) ;
2417
2418 return frame ;
2419}
2420
2421
2422
2423
2424////////////////////////////////////////////////////////////////////////////////
2425/// Return expected number of events from this p.d.f for use in extended
2426/// likelihood calculations. This default implementation returns zero
2427
2429{
2430 return 0 ;
2431}
2432
2433
2434
2435////////////////////////////////////////////////////////////////////////////////
2436/// Change global level of verbosity for p.d.f. evaluations
2437
2439{
2440 _verboseEval = stat ;
2441}
2442
2443
2444
2445////////////////////////////////////////////////////////////////////////////////
2446/// Return global level of verbosity for p.d.f. evaluations
2447
2449{
2450 return _verboseEval ;
2451}
2452
2453
2454
2455////////////////////////////////////////////////////////////////////////////////
2456/// Destructor of normalization cache element. If this element
2457/// provides the 'current' normalization stored in RooAbsPdf::_norm
2458/// zero _norm pointer here before object pointed to is deleted here
2459
2461{
2462 // Zero _norm pointer in RooAbsPdf if it is points to our cache payload
2463 if (_owner) {
2464 RooAbsPdf* pdfOwner = static_cast<RooAbsPdf*>(_owner) ;
2465 if (pdfOwner->_norm == _norm.get()) {
2466 pdfOwner->_norm = nullptr ;
2467 }
2468 }
2469}
2470
2471
2472
2473////////////////////////////////////////////////////////////////////////////////
2474/// Return a p.d.f that represent a projection of this p.d.f integrated over given observables
2475
2477{
2478 // Construct name for new object
2479 std::string name = std::string{GetName()} + "_Proj[" + RooHelpers::getColonSeparatedNameString(iset, ',') + "]";
2480
2481 // Return projected p.d.f.
2482 return new RooProjectedPdf(name.c_str(),name.c_str(),*this,iset) ;
2483}
2484
2485
2486
2487////////////////////////////////////////////////////////////////////////////////
2488/// Create a cumulative distribution function of this p.d.f in terms
2489/// of the observables listed in iset. If no nset argument is given
2490/// the c.d.f normalization is constructed over the integrated
2491/// observables, so that its maximum value is precisely 1. It is also
2492/// possible to choose a different normalization for
2493/// multi-dimensional p.d.f.s: eg. for a pdf f(x,y,z) one can
2494/// construct a partial cdf c(x,y) that only when integrated itself
2495/// over z results in a maximum value of 1. To construct such a cdf pass
2496/// z as argument to the optional nset argument
2497
2502
2503
2504
2505////////////////////////////////////////////////////////////////////////////////
2506/// Create an object that represents the integral of the function over one or more observables listed in `iset`.
2507/// The actual integration calculation is only performed when the return object is evaluated. The name
2508/// of the integral object is automatically constructed from the name of the input function, the variables
2509/// it integrates and the range integrates over
2510///
2511/// The following named arguments are accepted
2512/// | Type of CmdArg | Effect on CDF
2513/// | ---------------------|-------------------
2514/// | SupNormSet(const RooArgSet&) | Observables over which should be normalized _in addition_ to the integration observables
2515/// | ScanNumCdf() | Apply scanning technique if cdf integral involves numeric integration [ default ]
2516/// | ScanAllCdf() | Always apply scanning technique
2517/// | ScanNoCdf() | Never apply scanning technique
2518/// | ScanParameters(Int_t nbins, Int_t intOrder) | Parameters for scanning technique of making CDF: number of sampled bins and order of interpolation applied on numeric cdf
2519
2521 const RooCmdArg& arg3, const RooCmdArg& arg4, const RooCmdArg& arg5,
2522 const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8)
2523{
2524 // Define configuration for this method
2525 RooCmdConfig pc("RooAbsReal::createCdf(" + std::string(GetName()) + ")");
2526 pc.defineSet("supNormSet","SupNormSet",0,nullptr) ;
2527 pc.defineInt("numScanBins","ScanParameters",0,1000) ;
2528 pc.defineInt("intOrder","ScanParameters",1,2) ;
2529 pc.defineInt("doScanNum","ScanNumCdf",0,1) ;
2530 pc.defineInt("doScanAll","ScanAllCdf",0,0) ;
2531 pc.defineInt("doScanNon","ScanNoCdf",0,0) ;
2532 pc.defineMutex("ScanNumCdf","ScanAllCdf","ScanNoCdf") ;
2533
2534 // Process & check varargs
2536 if (!pc.ok(true)) {
2537 return nullptr ;
2538 }
2539
2540 // Extract values from named arguments
2541 const RooArgSet* snset = pc.getSet("supNormSet",nullptr);
2542 RooArgSet nset ;
2543 if (snset) {
2544 nset.add(*snset) ;
2545 }
2546 Int_t numScanBins = pc.getInt("numScanBins") ;
2547 Int_t intOrder = pc.getInt("intOrder") ;
2548 Int_t doScanNum = pc.getInt("doScanNum") ;
2549 Int_t doScanAll = pc.getInt("doScanAll") ;
2550 Int_t doScanNon = pc.getInt("doScanNon") ;
2551
2552 // If scanning technique is not requested make integral-based cdf and return
2553 if (doScanNon) {
2554 return createIntRI(iset,nset) ;
2555 }
2556 if (doScanAll) {
2557 return createScanCdf(iset,nset,numScanBins,intOrder) ;
2558 }
2559 if (doScanNum) {
2560 std::unique_ptr<RooAbsReal> tmp{createIntegral(iset)} ;
2561 Int_t isNum= !static_cast<RooRealIntegral&>(*tmp).numIntRealVars().empty();
2562
2563 if (isNum) {
2564 coutI(NumericIntegration) << "RooAbsPdf::createCdf(" << GetName() << ") integration over observable(s) " << iset << " involves numeric integration," << std::endl
2565 << " constructing cdf though numeric integration of sampled pdf in " << numScanBins << " bins and applying order "
2566 << intOrder << " interpolation on integrated histogram." << std::endl
2567 << " To override this choice of technique use argument ScanNone(), to change scan parameters use ScanParameters(nbins,order) argument" << std::endl ;
2568 }
2569
2571 }
2572 return nullptr ;
2573}
2574
2576{
2577 string name = string(GetName()) + "_NUMCDF_" + integralNameSuffix(iset,&nset).Data() ;
2578 RooRealVar* ivar = static_cast<RooRealVar*>(iset.first()) ;
2579 ivar->setBins(numScanBins,"numcdf") ;
2580 auto ret = std::make_unique<RooNumCdf>(name.c_str(),name.c_str(),*this,*ivar,"numcdf");
2581 ret->setInterpolationOrder(intOrder) ;
2582 return RooFit::makeOwningPtr<RooAbsReal>(std::move(ret));
2583}
2584
2585
2586
2587
2588////////////////////////////////////////////////////////////////////////////////
2589/// This helper function finds and collects all constraints terms of all component p.d.f.s
2590/// and returns a RooArgSet with all those terms.
2591
2592std::unique_ptr<RooArgSet>
2594{
2595 RooArgSet constraints;
2597
2598 std::unique_ptr<RooArgSet> comps(getComponents());
2599 for (const auto arg : *comps) {
2600 auto pdf = dynamic_cast<const RooAbsPdf*>(arg) ;
2601 if (pdf && !constraints.find(pdf->GetName())) {
2602 if (auto compRet = pdf->getConstraints(observables,constrainedParams, pdfParams)) {
2603 constraints.add(*compRet,false) ;
2604 }
2605 }
2606 }
2607
2609
2610 // Strip any constraints that are completely decoupled from the other product terms
2611 auto finalConstraints = std::make_unique<RooArgSet>("AllConstraints");
2612 for(auto * pdf : static_range_cast<RooAbsPdf*>(constraints)) {
2613
2614 RooArgSet tmp;
2615 pdf->getParameters(nullptr, tmp);
2616 conParams.add(tmp,true) ;
2617
2618 if (pdf->dependsOnValue(pdfParams) || !stripDisconnected) {
2619 finalConstraints->add(*pdf) ;
2620 } else {
2621 coutI(Minimization) << "RooAbsPdf::getAllConstraints(" << GetName() << ") omitting term " << pdf->GetName()
2622 << " as constraint term as it does not share any parameters with the other pdfs in product. "
2623 << "To force inclusion in likelihood, add an explicit Constrain() argument for the target parameter" << std::endl ;
2624 }
2625 }
2626
2627 // Now remove from constrainedParams all parameters that occur exclusively in constraint term and not in regular pdf term
2628
2630 conParams.selectCommon(constrainedParams, cexl);
2631 cexl.remove(pdfParams,true,true) ;
2632 constrainedParams.remove(cexl,true,true) ;
2633
2634 return finalConstraints ;
2635}
2636
2637
2638////////////////////////////////////////////////////////////////////////////////
2639/// Returns the default numeric MC generator configuration for all RooAbsReals
2640
2645
2646
2647////////////////////////////////////////////////////////////////////////////////
2648/// Returns the specialized integrator configuration for _this_ RooAbsReal.
2649/// If this object has no specialized configuration, a null pointer is returned
2650
2655
2656
2657
2658////////////////////////////////////////////////////////////////////////////////
2659/// Returns the specialized integrator configuration for _this_ RooAbsReal.
2660/// If this object has no specialized configuration, a null pointer is returned,
2661/// unless createOnTheFly is true in which case a clone of the default integrator
2662/// configuration is created, installed as specialized configuration, and returned
2663
2665{
2667 _specGeneratorConfig = std::make_unique<RooNumGenConfig>(*defaultGeneratorConfig()) ;
2668 }
2669 return _specGeneratorConfig.get();
2670}
2671
2672
2673
2674////////////////////////////////////////////////////////////////////////////////
2675/// Return the numeric MC generator configuration used for this object. If
2676/// a specialized configuration was associated with this object, that configuration
2677/// is returned, otherwise the default configuration for all RooAbsReals is returned
2678
2680{
2681 const RooNumGenConfig *config = specialGeneratorConfig();
2682 return config ? config : defaultGeneratorConfig();
2683}
2684
2685
2686
2687////////////////////////////////////////////////////////////////////////////////
2688/// Set the given configuration as default numeric MC generator
2689/// configuration for this object
2690
2692{
2693 _specGeneratorConfig = std::make_unique<RooNumGenConfig>(config);
2694}
2695
2696
2697
2698////////////////////////////////////////////////////////////////////////////////
2699/// Remove the specialized numeric MC generator configuration associated
2700/// with this object
2701
2706
2708
2709
2710////////////////////////////////////////////////////////////////////////////////
2711
2713 bool extended, bool randProto, bool resampleProto, TString dsetName, bool init) :
2714 _genContext(context), _whatVars(whatVars), _protoData(protoData), _nGen(nGen), _extended(extended),
2715 _randProto(randProto), _resampleProto(resampleProto), _dsetName(dsetName), _init(init)
2716{
2717}
2718
2719
2720namespace {
2721
2722void sterilizeClientCaches(RooAbsArg & arg) {
2723 auto const& clients = arg.clients();
2724 for(std::size_t iClient = 0; iClient < clients.size(); ++iClient) {
2725
2726 const std::size_t oldClientsSize = clients.size();
2727 RooAbsArg* client = clients[iClient];
2728
2729 for(int iCache = 0; iCache < client->numCaches(); ++iCache) {
2730 if(auto cacheMgr = dynamic_cast<RooObjCacheManager*>(client->getCache(iCache))) {
2731 cacheMgr->sterilize();
2732 }
2733 }
2734
2735 // It can happen that the objects cached by the client are also clients of
2736 // the arg itself! In that case, the position of the client in the client
2737 // list might have changed, and we need to find the new index.
2738 if(clients.size() != oldClientsSize) {
2739 auto clientIter = std::find(clients.begin(), clients.end(), client);
2740 if(clientIter == clients.end()) {
2741 throw std::runtime_error("After a clients caches were cleared, the client was gone! This should not happen.");
2742 }
2743 iClient = std::distance(clients.begin(), clientIter);
2744 }
2745 }
2746}
2747
2748} // namespace
2749
2750
2751////////////////////////////////////////////////////////////////////////////////
2752
2754{
2756
2757 // the stuff that the clients have cached may depend on the normalization range
2758 sterilizeClientCaches(*this);
2759
2760 if (_norm) {
2762 _norm = nullptr ;
2763 }
2764}
2765
2766
2767////////////////////////////////////////////////////////////////////////////////
2768
2770{
2772
2773 // the stuff that the clients have cached may depend on the normalization range
2774 sterilizeClientCaches(*this);
2775
2776 if (_norm) {
2778 _norm = nullptr ;
2779 }
2780}
2781
2782
2783////////////////////////////////////////////////////////////////////////////////
2784/// Hook function intercepting redirectServer calls. Discard current
2785/// normalization object if any server is redirected
2786
2788 bool nameChange, bool isRecursiveStep)
2789{
2790 // If servers are redirected, the cached normalization integrals and
2791 // normalization sets are most likely invalid.
2793
2794 // Object is own by _normCacheManager that will delete object as soon as cache
2795 // is sterilized by server redirect
2796 _norm = nullptr ;
2797
2798 // Similar to the situation with the normalization integral above: if a
2799 // server is redirected, the cached normalization set might not point to
2800 // the right observables anymore. We need to reset it.
2801 setActiveNormSet(nullptr);
2803}
2804
2805
2806std::unique_ptr<RooAbsArg>
2808{
2809 if (normSet.empty() || selfNormalized()) {
2811 }
2812 std::unique_ptr<RooAbsPdf> pdfClone(static_cast<RooAbsPdf *>(this->Clone()));
2814
2815 auto newArg = std::make_unique<RooFit::Detail::RooNormalizedPdf>(*pdfClone, normSet);
2816
2817 // The direct servers are this pdf and the normalization integral, which
2818 // don't need to be compiled further.
2819 for (RooAbsArg *server : newArg->servers()) {
2820 ctx.markAsCompiled(*server);
2821 }
2822 ctx.markAsCompiled(*newArg);
2823 newArg->addOwnedComponents(std::move(pdfClone));
2824 return newArg;
2825}
2826
2827/// Returns an object that represents the expected number of events for a given
2828/// normalization set, similar to how createIntegral() returns an object that
2829/// returns the integral. This is used to build the computation graph for the
2830/// final likelihood.
2831std::unique_ptr<RooAbsReal> RooAbsPdf::createExpectedEventsFunc(const RooArgSet * /*nset*/) const
2832{
2833 std::stringstream errMsg;
2834 errMsg << "The pdf \"" << GetName() << "\" of type " << ClassName()
2835 << " did not overload RooAbsPdf::createExpectedEventsFunc()!";
2836 coutE(InputArguments) << errMsg.str() << std::endl;
2837 return nullptr;
2838}
#define e(i)
Definition RSha256.hxx:103
#define coutI(a)
#define cxcoutI(a)
#define cxcoutD(a)
#define coutP(a)
#define oocoutW(o, a)
#define coutW(a)
#define coutE(a)
#define ccoutI(a)
#define ccoutD(a)
int Int_t
Signed integer 4 bytes (int)
Definition RtypesCore.h:59
static void indent(ostringstream &buf, int indent_level)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
char name[80]
Definition TGX11.cxx:110
float xmin
float ymin
float xmax
float ymax
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Definition TString.cxx:2495
const_iterator begin() const
const_iterator end() const
Common abstract base class for objects that represent a value and a "shape" in RooFit.
Definition RooAbsArg.h:76
void clearValueAndShapeDirty() const
Definition RooAbsArg.h:535
void Print(Option_t *options=nullptr) const override
Print the object to the defaultPrintStream().
Definition RooAbsArg.h:238
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooFit::OwningPtr< RooArgSet > getObservables(const RooArgSet &set, bool valueOnly=true) const
Given a set of possible observables, return the observables that this PDF depends on.
const Text_t * getStringAttribute(const Text_t *key) const
Get string attribute mapped under key 'key'.
virtual std::unique_ptr< RooAbsArg > compileForNormSet(RooArgSet const &normSet, RooFit::Detail::CompileContext &ctx) const
RooFit::OwningPtr< RooArgSet > getComponents() const
Create a RooArgSet with all components (branch nodes) of the expression tree headed by this object.
bool getAttribute(const Text_t *name) const
Check if a named attribute is set. By default, all attributes are unset.
RooAbsCache * getCache(Int_t index) const
Return registered cache object by index.
const RefCountList_t & clients() const
List of all clients of this object.
Definition RooAbsArg.h:137
bool isValueDirty() const
Definition RooAbsArg.h:356
void setProxyNormSet(const RooArgSet *nset)
Forward a change in the cached normalization argset to all the registered proxies.
void branchNodeServerList(RooAbsCollection *list, const RooAbsArg *arg=nullptr, bool recurseNonDerived=false) const
Fill supplied list with all branch nodes of the arg tree starting with ourself as top node.
TObject * Clone(const char *newname=nullptr) const override
Make a clone of an object using the Streamer facility.
Definition RooAbsArg.h:88
RefCountList_t _serverList
Definition RooAbsArg.h:564
Int_t numCaches() const
Return number of registered caches.
RooAbsArg * findServer(const char *name) const
Return server of this with name name. Returns nullptr if not found.
Definition RooAbsArg.h:147
RooAbsArg * _owner
! Pointer to owning RooAbsArg
Abstract base class for objects that represent a discrete value that can be set from the outside,...
Abstract container object that can hold multiple RooAbsArg objects.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
RooAbsArg * find(const char *name) const
Find object with given name in list.
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
Abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:56
Abstract base class for generator contexts of RooAbsPdf objects.
virtual RooDataSet * generate(double nEvents=0, bool skipInit=false, bool extendedMode=false)
Generate the specified number of events with nEvents>0 and and return a dataset containing the genera...
bool isValid() const
virtual void setProtoDataOrder(Int_t *lut)
Set the traversal order of prototype data to that in the lookup tables passed as argument.
Normalization set with for above integral.
Definition RooAbsPdf.h:318
std::unique_ptr< RooAbsReal > _norm
Definition RooAbsPdf.h:323
~CacheElem() override
Destructor of normalization cache element.
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:32
virtual bool syncNormalization(const RooArgSet *dset, bool adjustProxies=true) const
Verify that the normalization integral cached with this PDF is valid for given set of normalization o...
double getNorm(const RooArgSet &nset) const
Get normalisation term needed to normalise the raw values returned by getVal().
Definition RooAbsPdf.h:191
std::unique_ptr< RooAbsArg > compileForNormSet(RooArgSet const &normSet, RooFit::Detail::CompileContext &ctx) const override
RooObjCacheManager _normMgr
Definition RooAbsPdf.h:325
std::unique_ptr< RooNumGenConfig > _specGeneratorConfig
! MC generator configuration specific for this object
Definition RooAbsPdf.h:336
double getValV(const RooArgSet *set=nullptr) const override
Return current value, normalized by integrating over the observables in nset.
virtual std::unique_ptr< RooFitResult > fitToImpl(RooAbsData &data, const RooLinkedList &cmdList)
Protected implementation of the likelihood fitting routine.
virtual void generateEvent(Int_t code)
Interface for generation of an event using the algorithm corresponding to the specified code.
RooFit::OwningPtr< RooAbsReal > createScanCdf(const RooArgSet &iset, const RooArgSet &nset, Int_t numScanBins, Int_t intOrder)
void setGeneratorConfig()
Remove the specialized numeric MC generator configuration associated with this object.
virtual void resetErrorCounters(Int_t resetValue=10)
Reset error counter to given value, limiting the number of future error messages for this pdf to 'res...
std::unique_ptr< RooArgSet > getAllConstraints(const RooArgSet &observables, RooArgSet &constrainedParams, bool stripDisconnected=true) const
This helper function finds and collects all constraints terms of all component p.d....
static int verboseEval()
Return global level of verbosity for p.d.f. evaluations.
RooFit::OwningPtr< RooAbsReal > createCdf(const RooArgSet &iset, const RooArgSet &nset=RooArgSet())
Create a cumulative distribution function of this p.d.f in terms of the observables listed in iset.
bool isActiveNormSet(RooArgSet const *normSet) const
Checks if normSet is the currently active normalization set of this PDF, meaning is exactly the same ...
Definition RooAbsPdf.h:295
virtual double expectedEvents(const RooArgSet *nset) const
Return expected number of events to be used in calculation of extended likelihood.
virtual RooAbsGenContext * binnedGenContext(const RooArgSet &vars, bool verbose=false) const
Return a binned generator context.
TString _normRange
Normalization range.
Definition RooAbsPdf.h:338
virtual bool isDirectGenSafe(const RooAbsArg &arg) const
Check if given observable can be safely generated using the pdfs internal generator mechanism (if tha...
Int_t * randomizeProtoOrder(Int_t nProto, Int_t nGen, bool resample=false) const
Return lookup table with randomized order for nProto prototype events.
void setNormRange(const char *rangeName)
~RooAbsPdf() override
Destructor.
RooArgSet const * _normSet
Normalization integral (owned by _normMgr)
Definition RooAbsPdf.h:316
RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={}, const RooCmdArg &arg10={}) const override
Helper calling plotOn(RooPlot*, RooLinkedList&) const.
Definition RooAbsPdf.h:116
RooNumGenConfig * specialGeneratorConfig() const
Returns the specialized integrator configuration for this RooAbsReal.
virtual bool selfNormalized() const
Shows if a PDF is self-normalized, which means that no attempt is made to add a normalization term.
Definition RooAbsPdf.h:203
void printMultiline(std::ostream &os, Int_t contents, bool verbose=false, TString indent="") const override
Print multi line detailed information of this RooAbsPdf.
virtual double getCorrection() const
This function returns the penalty term.
Int_t _traceCount
Number of traces remaining to print.
Definition RooAbsPdf.h:331
bool canBeExtended() const
If true, PDF can provide extended likelihood term.
Definition RooAbsPdf.h:214
RooAbsReal * _norm
Definition RooAbsPdf.h:315
GenSpec * prepareMultiGen(const RooArgSet &whatVars, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={})
Prepare GenSpec configuration object for efficient generation of multiple datasets from identical spe...
void setTraceCounter(Int_t value, bool allNodes=false)
Reset trace counter to given value, limiting the number of future trace messages for this pdf to 'val...
Int_t _errorCount
Number of errors remaining to print.
Definition RooAbsPdf.h:330
@ CanNotBeExtended
Definition RooAbsPdf.h:208
virtual std::unique_ptr< RooAbsReal > createExpectedEventsFunc(const RooArgSet *nset) const
Returns an object that represents the expected number of events for a given normalization set,...
Int_t _negCount
Number of negative probabilities remaining to print.
Definition RooAbsPdf.h:332
virtual RooPlot * paramOn(RooPlot *frame, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={})
Add a box with parameter values (and errors) to the specified frame.
RooFit::OwningPtr< RooDataSet > generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={})
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
Definition RooAbsPdf.h:49
virtual const RooAbsReal * getNormObj(const RooArgSet *set, const RooArgSet *iset, const TNamed *rangeName=nullptr) const
Return pointer to RooAbsReal object that implements calculation of integral over observables iset in ...
void setActiveNormSet(RooArgSet const *normSet) const
Setter for the _normSet member, which should never be set directly.
Definition RooAbsPdf.h:280
double analyticalIntegralWN(Int_t code, const RooArgSet *normSet, const char *rangeName=nullptr) const override
Analytical integral with normalization (see RooAbsReal::analyticalIntegralWN() for further informatio...
void setNormRangeOverride(const char *rangeName)
virtual RooFit::OwningPtr< RooDataSet > generateSimGlobal(const RooArgSet &whatVars, Int_t nEvents)
Special generator interface for generation of 'global observables' – for RooStats tools.
double normalizeWithNaNPacking(double rawVal, double normVal) const
virtual RooAbsGenContext * autoGenContext(const RooArgSet &vars, const RooDataSet *prototype=nullptr, const RooArgSet *auxProto=nullptr, bool verbose=false, bool autoBinned=true, const char *binnedTag="") const
const RooNumGenConfig * getGeneratorConfig() const
Return the numeric MC generator configuration used for this object.
virtual void initGenerator(Int_t code)
Interface for one-time initialization to setup the generator for the specified code.
virtual ExtendMode extendMode() const
Returns ability of PDF to provide extended likelihood terms.
Definition RooAbsPdf.h:212
RooAbsPdf()
Default constructor.
virtual RooFit::OwningPtr< RooDataHist > generateBinned(const RooArgSet &whatVars, double nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}) const
As RooAbsPdf::generateBinned(const RooArgSet&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,...
Definition RooAbsPdf.h:102
bool traceEvalPdf(double value) const
Check that passed value is positive and not 'not-a-number'.
static RooNumGenConfig * defaultGeneratorConfig()
Returns the default numeric MC generator configuration for all RooAbsReals.
bool redirectServersHook(const RooAbsCollection &newServerList, bool mustReplaceAll, bool nameChange, bool isRecursiveStep) override
The cache manager.
void printValue(std::ostream &os) const override
Print value of p.d.f, also print normalization integral that was last used, if any.
virtual std::unique_ptr< RooAbsReal > createNLLImpl(RooAbsData &data, const RooLinkedList &cmdList)
Protected implementation of the NLL creation routine.
void logBatchComputationErrors(std::span< const double > &outputs, std::size_t begin) const
Scan through outputs and fix+log all nans and negative values.
virtual RooAbsGenContext * genContext(const RooArgSet &vars, const RooDataSet *prototype=nullptr, const RooArgSet *auxProto=nullptr, bool verbose=false) const
Interface function to create a generator context from a p.d.f.
void getLogProbabilities(std::span< const double > pdfValues, double *output) const
static TString _normRangeOverride
Definition RooAbsPdf.h:339
static Int_t _verboseEval
Definition RooAbsPdf.h:310
double extendedTerm(double sumEntries, double expected, double sumEntriesW2=0.0, bool doOffset=false) const
virtual Int_t getGenerator(const RooArgSet &directVars, RooArgSet &generateVars, bool staticInitOK=true) const
Load generatedVars with the subset of directVars that we can generate events for, and return a code t...
virtual RooAbsPdf * createProjection(const RooArgSet &iset)
Return a p.d.f that represent a projection of this p.d.f integrated over given observables.
virtual double getLogVal(const RooArgSet *set=nullptr) const
Return the log of the current value with given normalization An error message is printed if the argum...
bool hasRange(const char *name) const override
Check if variable has a binning with given name.
std::pair< double, double > getRange(const char *name=nullptr) const
Get low and high bound of the variable.
Abstract base class for objects that represent a real value and implements functionality common to al...
Definition RooAbsReal.h:63
RooDataHist * fillDataHist(RooDataHist *hist, const RooArgSet *nset, double scaleFactor, bool correctForBinVolume=false, bool showProgress=false) const
Fill a RooDataHist with values sampled from this function at the bin centers.
void plotOnCompSelect(RooArgSet *selNodes) const
Helper function for plotting of composite p.d.fs.
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
Definition RooAbsReal.h:107
bool plotSanityChecks(RooPlot *frame) const
Utility function for plotOn(), perform general sanity check on frame to ensure safe plotting operatio...
void printMultiline(std::ostream &os, Int_t contents, bool verbose=false, TString indent="") const override
Structure printing.
bool redirectServersHook(const RooAbsCollection &newServerList, bool mustReplaceAll, bool nameChange, bool isRecursiveStep) override
Function that is called at the end of redirectServers().
double _value
Cache for current value of object.
Definition RooAbsReal.h:539
virtual double analyticalIntegral(Int_t code, const char *rangeName=nullptr) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
TString integralNameSuffix(const RooArgSet &iset, const RooArgSet *nset=nullptr, const char *rangeName=nullptr, bool omitEmpty=false) const
Construct string with unique suffix name to give to integral object that encodes integrated observabl...
virtual double evaluate() const =0
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes.
void logEvalError(const char *message, const char *serverValueString=nullptr) const
Log evaluation error message.
const RooNumIntConfig * getIntegratorConfig() const
Return the numeric integration configuration used for this object.
virtual bool isBinnedDistribution(const RooArgSet &) const
Tests if the distribution is binned. Unless overridden by derived classes, this always returns false.
Definition RooAbsReal.h:352
RooFit::OwningPtr< RooAbsReal > createIntRI(const RooArgSet &iset, const RooArgSet &nset={})
Utility function for createRunningIntegral.
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={}, const RooCmdArg &arg10={}) const
Plot (project) PDF on specified frame.
RooFit::OwningPtr< RooAbsReal > createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create an object that represents the integral of the function over one or more observables listed in ...
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Efficient implementation of the generator context specific for binned pdfs.
Int_t setObj(const RooArgSet *nset, T *obj, const TNamed *isetRangeName=nullptr)
Setter function without integration set.
T * getObj(const RooArgSet *nset, Int_t *sterileIndex=nullptr, const TNamed *isetRangeName=nullptr)
Getter function without integration set.
Implementation of RooAbsCachedReal that can cache any external RooAbsReal input function provided in ...
Named container for two doubles, two integers two object points and three string pointers that can be...
Definition RooCmdArg.h:26
Configurable parser for RooCmdArg named arguments.
void defineMutex(const char *head, Args_t &&... tail)
Define arguments where any pair is mutually exclusive.
bool process(const RooCmdArg &arg)
Process given RooCmdArg.
bool hasProcessed(const char *cmdName) const
Return true if RooCmdArg with name 'cmdName' has been processed.
double getDouble(const char *name, double defaultValue=0.0) const
Return double property registered with name 'name'.
bool defineDouble(const char *name, const char *argName, int doubleNum, double defValue=0.0)
Define double property name 'name' mapped to double in slot 'doubleNum' in RooCmdArg with name argNam...
static void stripCmdList(RooLinkedList &cmdList, const char *cmdsToPurge)
Utility function that strips command names listed (comma separated) in cmdsToPurge from cmdList.
RooArgSet * getSet(const char *name, RooArgSet *set=nullptr) const
Return RooArgSet property registered with name 'name'.
bool defineSet(const char *name, const char *argName, int setNum, const RooArgSet *set=nullptr)
Define TObject property name 'name' mapped to object in slot 'setNum' in RooCmdArg with name argName ...
bool ok(bool verbose) const
Return true of parsing was successful.
bool defineObject(const char *name, const char *argName, int setNum, const TObject *obj=nullptr, bool isArray=false)
Define TObject property name 'name' mapped to object in slot 'setNum' in RooCmdArg with name argName ...
const char * getString(const char *name, const char *defaultValue="", bool convEmptyToNull=false) const
Return string property registered with name 'name'.
bool defineString(const char *name, const char *argName, int stringNum, const char *defValue="", bool appendMode=false)
Define double property name 'name' mapped to double in slot 'stringNum' in RooCmdArg with name argNam...
bool defineInt(const char *name, const char *argName, int intNum, int defValue=0)
Define integer property name 'name' mapped to integer in slot 'intNum' in RooCmdArg with name argName...
void allowUndefined(bool flag=true)
If flag is true the processing of unrecognized RooCmdArgs is not considered an error.
int getInt(const char *name, int defaultValue=0) const
Return integer property registered with name 'name'.
TObject * getObject(const char *name, TObject *obj=nullptr) const
Return TObject property registered with name 'name'.
Container class to hold unbinned data.
Definition RooDataSet.h:32
void markAsCompiled(RooAbsArg &arg) const
void compileServers(RooAbsArg &arg, RooArgSet const &normSet)
Implements a universal generator context for all RooAbsPdf classes that do not have or need a special...
Switches the message service to a different level while the instance is alive.
Definition RooHelpers.h:37
Collection class for internal use, storing a collection of RooAbsArg pointers in a doubly linked list...
static const char * str(const TNamed *ptr)
Return C++ string corresponding to given TNamed pointer.
Definition RooNameReg.h:39
Holds the configuration parameters of the various numeric integrators used by RooRealIntegral.
static RooNumGenConfig & defaultConfig()
Return reference to instance of default numeric integrator configuration object.
Implementation of a RooCacheManager<RooAbsCacheElement> that specializes in the storage of cache elem...
void sterilize() override
Clear the cache payload but retain slot mapping w.r.t to normalization and integration sets.
Plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:43
void addObject(TObject *obj, Option_t *drawOptions="", bool invisible=false)
Add a generic object to this plot.
Definition RooPlot.cxx:325
double getFitRangeNEvt() const
Return the number of events in the fit range.
Definition RooPlot.h:139
const RooArgSet * getNormVars() const
Definition RooPlot.h:146
RooAbsRealLValue * getPlotVar() const
Definition RooPlot.h:137
void updateNormVars(const RooArgSet &vars)
Install the given set of observables are reference normalization variables for this frame.
Definition RooPlot.cxx:310
double getFitRangeBinW() const
Return the bin width that is being used to normalise the PDF.
Definition RooPlot.h:142
virtual void printStream(std::ostream &os, Int_t contents, StyleOption style, TString indent="") const
Print description of object on ostream, printing contents set by contents integer,...
A RooAbsPdf implementation that represent a projection of a given input p.d.f and the object returned...
static UInt_t integer(UInt_t max, TRandom *generator=randomGenerator())
Return an integer uniformly distributed from [0,n-1].
Definition RooRandom.cxx:95
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition RooRandom.cxx:47
Performs hybrid numerical/analytical integrals of RooAbsReal objects.
const RooArgSet & numIntRealVars() const
Variable that can be changed from the outside.
Definition RooRealVar.h:37
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
Mother of all ROOT objects.
Definition TObject.h:41
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:457
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:226
A Pave (see TPave) with text, lines or/and boxes inside.
Definition TPaveText.h:21
Basic string class.
Definition TString.h:138
Ssiz_t Length() const
Definition TString.h:425
const char * Data() const
Definition TString.h:384
TLine * line
void box(Int_t pat, Double_t x1, Double_t y1, Double_t x2, Double_t y2)
Definition fillpatterns.C:1
RooCmdArg SupNormSet(const RooArgSet &nset)
RooCmdArg NormRange(const char *rangeNameList)
RooCmdArg Range(const char *rangeName, bool adjustNorm=true)
RooCmdArg Normalization(double scaleFactor)
std::vector< std::string > Split(std::string_view str, std::string_view delims, bool skipEmpty=false)
Splits a string at each character in delims.
T * OwningPtr
An alias for raw pointers for indicating that the return type of a RooFit function is an owning point...
Definition Config.h:35
OwningPtr< T > makeOwningPtr(std::unique_ptr< T > &&ptr)
Internal helper to turn a std::unique_ptr<T> into an OwningPtr.
Definition Config.h:40
RooArgSet selectFromArgSet(RooArgSet const &, std::string const &names)
std::string getColonSeparatedNameString(RooArgSet const &argSet, char delim=':')
Bool_t IsNaN(Double_t x)
Definition TMath.h:903
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Definition TMath.h:913
static double packFloatIntoNaN(float payload)
Pack float into mantissa of a NaN.
static void output()