1#ifndef ROOT_TEfficiency_cxx
2#define ROOT_TEfficiency_cxx
700fPassedHistogram(nullptr),
701fTotalHistogram(nullptr),
756 Info(
"TEfficiency",
"given histograms are filled with weights");
761 Error(
"TEfficiency(const TH1&,const TH1&)",
"histograms are not consistent -> results are useless");
762 Warning(
"TEfficiency(const TH1&,const TH1&)",
"using two empty TH1D('h1','h1',10,0,10)");
984 fTotalHistogram =
new TH3D(
"total",
"total",
nbinsx,xlow,xup,
nbinsy,ylow,yup,
nbinsz,
zlow,
zup);
985 fPassedHistogram =
new TH3D(
"passed",
"passed",
nbinsx,xlow,xup,
nbinsy,ylow,yup,
nbinsz,
zlow,
zup);
1024fPaintGraph(nullptr),
1025fPaintHisto(nullptr),
1059 fBeta_alpha(
rEff.fBeta_alpha),
1060 fBeta_beta(
rEff.fBeta_beta),
1061 fBeta_bin_params(
rEff.fBeta_bin_params),
1062 fConfLevel(
rEff.fConfLevel),
1063 fDirectory(nullptr),
1064 fFunctions(nullptr),
1065 fPaintGraph(nullptr),
1066 fPaintHisto(nullptr),
1067 fWeight(
rEff.fWeight)
1070 rEff.TObject::Copy(*
this);
1083 title +=
rEff.GetTitle();
1091 rEff.TAttLine::Copy(*
this);
1092 rEff.TAttFill::Copy(*
this);
1093 rEff.TAttMarker::Copy(*
this);
1158 return ((
mode + delta) > 1) ? 1.0 : (
mode + delta);
1160 return ((
mode - delta) < 0) ? 0.0 : (
mode - delta);
1177 ::Error(
"FeldmanCousins",
"Error running FC method - return 0 or 1");
1208 double alpha = 1.-level;
1232 const double alpha = 1. - level;
1235 const double tol = 1
e-9;
1351 if((
a > 0) && (
b > 0))
1354 gROOT->Error(
"TEfficiency::BayesianCentral",
"Invalid input parameters - return 1");
1359 if((
a > 0) && (
b > 0))
1362 gROOT->Error(
"TEfficiency::BayesianCentral",
"Invalid input parameters - return 0");
1406 if (
a <= 0 ||
b <= 0) {
1408 gROOT->Error(
"TEfficiency::BayesianShortest",
"Invalid input parameters - return [0,1]");
1427 if (
a==
b &&
a<=1.0) {
1441 bool ret =
minim.Minimize(100, 1.E-10,1.E-10);
1443 gROOT->Error(
"TEfficiency::BayesianShortes",
"Error finding the shortest interval");
1460 if (
a <= 0 ||
b <= 0 ) {
1461 gROOT->Error(
"TEfficiency::BayesianMean",
"Invalid input parameters - return 0");
1483 if (
a <= 0 ||
b <= 0 ) {
1484 gROOT->Error(
"TEfficiency::BayesianMode",
"Invalid input parameters - return 0");
1487 if (
a <= 1 ||
b <= 1) {
1488 if (
a <
b)
return 0;
1489 if (
a >
b)
return 1;
1490 if (
a ==
b)
return 0.5;
1550 if(
ax1->GetNbins() !=
ax2->GetNbins()) {
1551 gROOT->Info(
"TEfficiency::CheckBinning",
"Histograms are not consistent: they have different number of bins");
1555 for(
Int_t i = 1; i <=
ax1->GetNbins() + 1; ++i)
1557 gROOT->Info(
"TEfficiency::CheckBinning",
"Histograms are not consistent: they have different bin edges");
1578 if(
pass.GetDimension() !=
total.GetDimension()) {
1579 gROOT->Error(
"TEfficiency::CheckConsistency",
"passed TEfficiency objects have different dimensions");
1584 gROOT->Error(
"TEfficiency::CheckConsistency",
"passed TEfficiency objects have different binning");
1589 gROOT->Error(
"TEfficiency::CheckConsistency",
"passed TEfficiency objects do not have consistent bin contents");
1618 switch(
pass.GetDimension()) {
1619 case 1: nbins =
nbinsx + 2;
break;
1625 for(
Int_t i = 0; i < nbins; ++i) {
1626 if(
pass.GetBinContent(i) >
total.GetBinContent(i)) {
1627 gROOT->Info(
"TEfficiency::CheckEntries",
"Histograms are not consistent: passed bin content > total bin content");
1640 if (
pass.GetSumw2N() == 0 &&
total.GetSumw2N() == 0)
return false;
1670 Error(
"CreatePaintingGraph",
"Call this function only for dimension == 1");
1689 Error(
"CreatePaintingGraph",
"Call this function only for dimension == 2");
1719 double * px = graph->
GetX();
1720 double * py = graph->
GetY();
1721 double * pz = graph->
GetZ();
1823 double * px = graph->
GetX();
1824 double * py = graph->
GetY();
1839 if (
j >= graph->
GetN() ) {
1895 Error(
"CreatePaintingistogram",
"Call this function only for dimension == 2");
1903 TH2 * hist =
nullptr;
1905 if (
xaxis->IsVariableBinSize() &&
yaxis->IsVariableBinSize() )
1908 else if (
xaxis->IsVariableBinSize() && !
yaxis->IsVariableBinSize() )
1911 else if (!
xaxis->IsVariableBinSize() &&
yaxis->IsVariableBinSize() )
2018 Double_t alpha = (1.0 - level) / 2;
2129 for (
int i = 0; i <
n ; ++i) {
2131 ::Error(
"TEfficiency::Combine",
"total events = %i < passed events %i",
total[i],
pass[i]);
2132 ::Info(
"TEfficiency::Combine",
"stop combining");
2147 ::Info(
"TEfficiency::Combine",
"stop combining");
2151 double a =
ktot + alpha;
2154 double mean =
a/(
a+
b);
2236 level = atof( opt(pos,opt.
Length() ).
Data() );
2237 if((level <= 0) || (level >= 1))
2245 for(
Int_t k = 0; k <
n; ++k) {
2249 gROOT->Error(
"TEfficiency::Combine",
"invalid custom weight found w = %.2lf",
w[k]);
2250 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2259 while((obj = next())) {
2263 if(
pEff->GetDimension() > 1)
2265 if(!level) level =
pEff->GetConfidenceLevel();
2267 if(alpha<1) alpha =
pEff->GetBetaAlpha();
2268 if(beta<1) beta =
pEff->GetBetaBeta();
2272 if(alpha !=
pEff->GetBetaAlpha())
2274 if(beta !=
pEff->GetBetaBeta())
2276 if(!
pEff->UsesBayesianStat())
2301 gROOT->Error(
"TEfficiency::Combine",
"no TEfficiency objects in given list");
2302 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2308 gROOT->Error(
"TEfficiency::Combine",
"number of weights n=%i differs from number of TEfficiency objects k=%i which should be combined",
n,(
Int_t)
vTotal.size());
2309 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2317 gROOT->Warning(
"TEfficiency::Combine",
"histograms have not the same binning -> results may be useless");
2323 gROOT->Info(
"TEfficiency::Combine",
"combining %i TEfficiency objects",(
Int_t)
vTotal.size());
2325 gROOT->Info(
"TEfficiency::Combine",
"using custom weights");
2327 gROOT->Info(
"TEfficiency::Combine",
"using the following prior probability for the efficiency: P(e) ~ Beta(e,%.3lf,%.3lf)",alpha,beta);
2330 gROOT->Info(
"TEfficiency::Combine",
"using individual priors of each TEfficiency object");
2331 gROOT->Info(
"TEfficiency::Combine",
"confidence level = %.2lf",level);
2345 std::vector<Int_t>
pass(num);
2346 std::vector<Int_t>
total(num);
2353 x[i-1] =
vTotal.at(0)->GetBinCenter(i);
2354 xlow[i-1] =
x[i-1] -
vTotal.at(0)->GetBinLowEdge(i);
2355 xhigh[i-1] =
vTotal.at(0)->GetBinWidth(i) - xlow[i-1];
2365 if(eff[i-1] == -1) {
2366 gROOT->Error(
"TEfficiency::Combine",
"error occurred during combining");
2367 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2370 efflow[i-1]= eff[i-1] - low;
2562 if(
option.Contains(
"+")) {
2563 option.ReplaceAll(
"+",
"");
2572 if (!
option.Contains(
"N")) {
2579 while((obj = next())) {
2752 if (
tw2 <= 0)
return 0;
2773 Warning(
"GetEfficiencyErrorLow",
"frequentist confidence intervals for weights are only supported by the normal approximation");
2774 Info(
"GetEfficiencyErrorLow",
"setting statistic option to kFNormal");
2785 return (eff - delta < 0) ? eff : delta;
2832 if (
tw2 <= 0)
return 0;
2853 Warning(
"GetEfficiencyErrorUp",
"frequentist confidence intervals for weights are only supported by the normal approximation");
2854 Info(
"GetEfficiencyErrorUp",
"setting statistic option to kFNormal");
2864 return (eff + delta > 1) ? 1.-eff : delta;
2917 if(!
pList->IsEmpty()) {
2921 while((obj = next())) {
2961 return ((average + delta) > 1) ? 1.0 : (average + delta);
2963 return ((average - delta) < 0) ? 0.0 : (average - delta);
2988 Fatal(
"operator+=",
"Adding to a non consistent TEfficiency object which has not a total or a passed histogram ");
2992 if (
rhs.fTotalHistogram ==
nullptr &&
rhs.fPassedHistogram ==
nullptr ) {
2993 Warning(
"operator+=",
"no operation: adding an empty object");
2996 else if (
rhs.fTotalHistogram ==
nullptr ||
rhs.fPassedHistogram ==
nullptr ) {
2997 Fatal(
"operator+=",
"Adding a non consistent TEfficiency object which has not a total or a passed histogram ");
3055 rhs.TAttLine::Copy(*
this);
3056 rhs.TAttFill::Copy(*
this);
3057 rhs.TAttMarker::Copy(*
this);
3110 while ((obj = next())) {
3113 ((
TF1 *)obj)->Paint(
"sameC");
3122 if (
option.Contains(
"GRAPH")) {
3123 option.ReplaceAll(
"GRAPH",
"");
3149 Warning(
"Paint",
"Painting 3D efficiency is not implemented");
3190 if (i != 0) out <<
", ";
3193 out <<
"}; " << std::endl;
3199 if (i != 0) out <<
", ";
3202 out <<
"}; " << std::endl;
3209 if (i != 0) out <<
", ";
3212 out <<
"}; " << std::endl;
3225 const char quote =
'"';
3226 out <<
indent << std::endl;
3256 out <<
");" << std::endl;
3257 out <<
indent << std::endl;
3271 out <<
indent <<
name <<
"->SetUseWeightedEvents();" << std::endl;
3288 for(
Int_t i = 0; i < nbins; ++i) {
3289 out <<
indent <<
name <<
"->SetTotalEvents(" << i <<
"," <<
3291 out <<
indent <<
name <<
"->SetPassedEvents(" << i <<
"," <<
3298 while((obj = next())) {
3301 out <<
indent <<
name <<
"->GetListOfFunctions()->Add("
3302 << obj->
GetName() <<
");" << std::endl;
3314 if (!
option.Contains(
"nodraw"))
3334 Warning(
"SetBetaAlpha(Double_t)",
"invalid shape parameter %.2lf",alpha);
3352 Warning(
"SetBetaBeta(Double_t)",
"invalid shape parameter %.2lf",beta);
3392 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3396 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3412 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3416 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3432 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3436 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3452 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3456 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3473 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3477 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3494 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3498 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3513 if((level > 0) && (level < 1))
3516 Warning(
"SetConfidenceLevel(Double_t)",
"invalid confidence level %.2lf",level);
3573 Error(
"SetPassedEvents(Int_t,Int_t)",
"total number of events (%.1lf) in bin %i is less than given number of passed events %i",
fTotalHistogram->
GetBinContent(bin),bin,events);
3767 Error(
"SetTotalEvents(Int_t,Double_t)",
"passed number of events (%.1lf) in bin %i is bigger than given number of total events %.1lf",
fPassedHistogram->
GetBinContent(bin),bin,events);
3828 gROOT->Info(
"TEfficiency::SetUseWeightedEvents",
"Handle weighted events for computing efficiency");
3848 Warning(
"SetWeight",
"invalid weight %.2lf",weight);
3882 * (1 - average) + kappa * kappa / 4);
3884 return ((
mode + delta) > 1) ? 1.0 : (
mode + delta);
3886 return ((
mode - delta) < 0) ? 0.0 : (
mode - delta);
static void indent(ostringstream &buf, int indent_level)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
const TEfficiency operator+(const TEfficiency &lhs, const TEfficiency &rhs)
Addition operator.
const Double_t kDefBetaAlpha
const Double_t kDefWeight
const Double_t kDefBetaBeta
const TEfficiency::EStatOption kDefStatOpt
const Double_t kDefConfLevel
static unsigned int total
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void on
Option_t Option_t TPoint TPoint const char mode
User class for performing function minimization.
Template class to wrap any C++ callable object which takes one argument i.e.
Fill Area Attributes class.
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Class to manage histogram axis.
virtual void SetBinLabel(Int_t bin, const char *label)
Set label for bin.
const char * GetTitle() const override
Returns title of object.
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
const TArrayD * GetXbins() const
const char * GetBinLabel(Int_t bin) const
Return label for bin.
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
THashList * GetLabels() const
Binomial fitter for the division of two histograms.
TFitResultPtr Fit(TF1 *f1, Option_t *option="")
Carry out the fit of the given function to the given histograms.
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
Collection abstract base class.
TDirectory::TContext keeps track and restore the current directory.
Describe directory structure in memory.
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
Class to handle efficiency histograms.
void FillGraph2D(TGraph2DAsymmErrors *graph, Option_t *opt) const
Fill the graph to be painted with information from TEfficiency Internal method called by TEfficiency:...
void Draw(Option_t *opt="") override
Draws the current TEfficiency object.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
static Bool_t FeldmanCousinsInterval(Double_t total, Double_t passed, Double_t level, Double_t &lower, Double_t &upper)
Calculates the interval boundaries using the frequentist methods of Feldman-Cousins.
static Double_t BetaMode(Double_t alpha, Double_t beta)
Compute the mode of the beta distribution.
Bool_t SetPassedEvents(Int_t bin, Int_t events)
Sets the number of passed events in the given global bin.
TH2 * CreateHistogram(Option_t *opt="") const
Create the histogram used to be painted (for dim=2 TEfficiency) The return object is managed by the c...
static Bool_t BetaShortestInterval(Double_t level, Double_t alpha, Double_t beta, Double_t &lower, Double_t &upper)
Calculates the boundaries for a shortest confidence interval for a Beta distribution.
static Bool_t CheckWeights(const TH1 &pass, const TH1 &total)
Check if both histogram are weighted.
static Double_t BetaMean(Double_t alpha, Double_t beta)
Compute the mean (average) of the beta distribution.
TEfficiency()
Default constructor.
Double_t GetBetaAlpha(Int_t bin=-1) const
void FillWeighted(Bool_t bPassed, Double_t weight, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms with a weight.
~TEfficiency() override
default destructor
TList * GetListOfFunctions()
static Double_t Bayesian(Double_t total, Double_t passed, Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper, Bool_t bShortest=false)
Calculates the boundaries for a Bayesian confidence interval (shortest or central interval depending ...
static Double_t AgrestiCoull(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Agresti-Coull interval.
Long64_t Merge(TCollection *list)
Merges the TEfficiency objects in the given list to the given TEfficiency object using the operator+=...
std::vector< std::pair< Double_t, Double_t > > fBeta_bin_params
Parameter for prior beta distribution different bin by bin (default vector is empty)
static Double_t FeldmanCousins(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Feldman-Cousins interval.
EStatOption fStatisticOption
Defines how the confidence intervals are determined.
void SetStatisticOption(EStatOption option)
Sets the statistic option which affects the calculation of the confidence interval.
void Paint(Option_t *opt) override
Paints this TEfficiency object.
void SetWeight(Double_t weight)
Sets the global weight for this TEfficiency object.
TH1 * fTotalHistogram
Histogram for total number of events.
Int_t GetDimension() const
returns the dimension of the current TEfficiency object
TGraph2DAsymmErrors * fPaintGraph2D
! Temporary graph for painting
TEfficiency & operator+=(const TEfficiency &rhs)
Adds the histograms of another TEfficiency object to current histograms.
Bool_t SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Set the bins for the underlined passed and total histograms If the class have been already filled the...
void Build(const char *name, const char *title)
Building standard data structure of a TEfficiency object.
TH1 * GetCopyPassedHisto() const
Returns a cloned version of fPassedHistogram.
Double_t GetEfficiencyErrorUp(Int_t bin) const
Returns the upper error on the efficiency in the given global bin.
Double_t fBeta_alpha
Global parameter for prior beta distribution (default = 1)
void SavePrimitive(std::ostream &out, Option_t *opt="") override
Have histograms fixed bins along each axis?
void SetBetaBeta(Double_t beta)
Sets the shape parameter β.
static Bool_t CheckBinning(const TH1 &pass, const TH1 &total)
Checks binning for each axis.
void SetName(const char *name) override
Sets the name.
TGraph2DAsymmErrors * CreateGraph2D(Option_t *opt="") const
Create the graph used be painted (for dim=1 TEfficiency) The return object is managed by the caller.
static Double_t BetaCentralInterval(Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper)
Calculates the boundaries for a central confidence interval for a Beta distribution.
Int_t GetGlobalBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Returns the global bin number which can be used as argument for the following functions:
TH1 * fPassedHistogram
Histogram for events which passed certain criteria.
static Double_t MidPInterval(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries using the mid-P binomial interval (Lancaster method) from B.
void SetBetaAlpha(Double_t alpha)
Sets the shape parameter α.
@ kIsBayesian
Bayesian statistics are used.
@ kUseWeights
Use weights.
@ kPosteriorMode
Use posterior mean for best estimate (Bayesian statistics)
@ kUseBinPrior
Use a different prior for each bin.
@ kShortestInterval
Use shortest interval.
static Bool_t CheckEntries(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks whether bin contents are compatible with binomial statistics.
static Double_t Normal(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Returns the confidence limits for the efficiency supposing that the efficiency follows a normal distr...
Double_t fWeight
Weight for all events (default = 1)
Bool_t SetPassedHistogram(const TH1 &rPassed, Option_t *opt)
Sets the histogram containing the passed events.
Double_t GetBetaBeta(Int_t bin=-1) const
Double_t(* fBoundary)(Double_t, Double_t, Double_t, Bool_t)
! Pointer to a method calculating the boundaries of confidence intervals
void FillGraph(TGraphAsymmErrors *graph, Option_t *opt) const
Fill the graph to be painted with information from TEfficiency Internal method called by TEfficiency:...
static Double_t Combine(Double_t &up, Double_t &low, Int_t n, const Int_t *pass, const Int_t *total, Double_t alpha, Double_t beta, Double_t level=0.683, const Double_t *w=nullptr, Option_t *opt="")
void FillHistogram(TH2 *h2) const
Fill the 2d histogram to be painted with information from TEfficiency 2D Internal method called by TE...
Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Returns the global bin number containing the given values.
TDirectory * fDirectory
! Pointer to directory holding this TEfficiency object
void SetUseWeightedEvents(Bool_t on=kTRUE)
static Double_t Wilson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Wilson interval.
TEfficiency & operator=(const TEfficiency &rhs)
Assignment operator.
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a graph.
Double_t fConfLevel
Confidence level (default = 0.683, 1 sigma)
Double_t fBeta_beta
Global parameter for prior beta distribution (default = 1)
Double_t GetEfficiency(Int_t bin) const
Returns the efficiency in the given global bin.
Bool_t SetTotalHistogram(const TH1 &rTotal, Option_t *opt)
Sets the histogram containing all events.
void Fill(Bool_t bPassed, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms.
void SetDirectory(TDirectory *dir)
Sets the directory holding this TEfficiency object.
TGraphAsymmErrors * fPaintGraph
! Temporary graph for painting
TGraphAsymmErrors * CreateGraph(Option_t *opt="") const
Create the graph used be painted (for dim=1 TEfficiency) The return object is managed by the caller.
TList * fFunctions
->Pointer to list of functions
Bool_t SetTotalEvents(Int_t bin, Double_t events)
Sets the number of total events in the given global bin.
void SetBetaBinParameters(Int_t bin, Double_t alpha, Double_t beta)
Sets different shape parameter α and β for the prior distribution for each bin.
static Bool_t CheckConsistency(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks the consistence of the given histograms.
TH1 * GetCopyTotalHisto() const
Returns a cloned version of fTotalHistogram.
static Double_t ClopperPearson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Clopper-Pearson interval.
void SetConfidenceLevel(Double_t level)
Sets the confidence level (0 < level < 1) The default value is 1-sigma :~ 0.683.
Double_t GetEfficiencyErrorLow(Int_t bin) const
Returns the lower error on the efficiency in the given global bin.
EStatOption
Enumeration type for different statistic options for calculating confidence intervals kF* ....
@ kBJeffrey
Jeffrey interval (Prior ~ Beta(0.5,0.5)
@ kFWilson
Wilson interval.
@ kFAC
Agresti-Coull interval.
@ kMidP
Mid-P Lancaster interval.
@ kBUniform
Prior ~ Uniform = Beta(1,1)
@ kFFC
Feldman-Cousins interval.
@ kBBayesian
User specified Prior ~ Beta(fBeta_alpha,fBeta_beta)
@ kFNormal
Normal approximation.
@ kFCP
Clopper-Pearson interval (recommended by PDG)
void SetTitle(const char *title) override
Sets the title.
TFitResultPtr Fit(TF1 *f1, Option_t *opt="")
Fits the efficiency using the TBinomialEfficiencyFitter class.
TH2 * fPaintHisto
! Temporary histogram for painting
void Copy(TObject &f1) const override
Copy this F1 to a new F1.
TClass * IsA() const override
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Graph 2D class with errors.
Double_t * GetEYlow() const override
virtual void SetPointError(Int_t i, Double_t exl, Double_t exh, Double_t eyl, Double_t eyh, Double_t ezl, Double_t ezh)
Set ex, ey and ez values for point number i.
Double_t * GetEYhigh() const override
Double_t * GetEZhigh() const override
Double_t * GetEXhigh() const override
Double_t * GetEZlow() const override
void Set(Int_t n) override
Set number of points in the 2D graph.
void SetPoint(Int_t i, Double_t x, Double_t y, Double_t z) override
Set x, y and z values for point number i.
Double_t * GetEXlow() const override
TH2D * GetHistogram(Option_t *option="")
By default returns a pointer to the Delaunay histogram.
TAxis * GetZaxis() const
Get z axis of the graph.
void SetName(const char *name) override
Changes the name of this 2D graph.
void SetTitle(const char *title="") override
Sets the 2D graph title.
TAxis * GetYaxis() const
Get y axis of the graph.
void Paint(Option_t *option="") override
Paints this 2D graph with its current attributes.
TAxis * GetXaxis() const
Get x axis of the graph.
TGraph with asymmetric error bars.
Double_t * GetEXlow() const override
virtual void SetPointError(Double_t exl, Double_t exh, Double_t eyl, Double_t eyh)
Set ex and ey values for point pointed by the mouse.
Double_t * GetEYhigh() const override
Double_t * GetEXhigh() const override
Double_t * GetEYlow() const override
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
void Paint(Option_t *chopt="") override
Draw this graph with its current attributes.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
void SetName(const char *name="") override
Set graph name.
TAxis * GetXaxis() const
Get x axis of the graph.
virtual void PaintStats(TF1 *fit)
Draw the stats.
TAxis * GetYaxis() const
Get y axis of the graph.
virtual TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases.
void SetTitle(const char *title="") override
Change (i.e.
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a graph.
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
1-D histogram with a double per channel (see TH1 documentation)
1-D histogram with a float per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
virtual void SetNormFactor(Double_t factor=1)
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
void SetTitle(const char *title) override
Change/set the title.
virtual Int_t GetNbinsY() const
virtual Int_t GetNbinsZ() const
virtual Int_t GetDimension() const
@ kIsAverage
Bin contents are average (used by Add)
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
virtual Int_t GetNcells() const
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
virtual Int_t GetNbinsX() const
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
virtual Double_t GetEntries() const
Return the current number of entries.
void SetName(const char *name) override
Change the name of this histogram.
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
@ kNstat
Size of statistics data (up to TProfile3D)
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual TArrayD * GetSumw2()
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
virtual Int_t GetSumw2N() const
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
2-D histogram with a double per channel (see TH1 documentation)
2-D histogram with a float per channel (see TH1 documentation)
Service class for 2-D histogram classes.
void SetBinContent(Int_t bin, Double_t content) override
Set bin content.
3-D histogram with a double per channel (see TH1 documentation)
The 3-D histogram classes derived from the 1-D histogram classes.
void Add(TObject *obj) override
TObject * Remove(TObject *obj) override
Remove object from the list.
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
The TNamed class is the base class for all named ROOT classes.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
const char * GetTitle() const override
Returns title of object.
virtual void SetName(const char *name)
Set the name of the TNamed.
Mother of all ROOT objects.
virtual const char * GetName() const
Returns name of object.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
@ kInvalidObject
if object ctor succeeded but object should not be used
void ToLower()
Change string to lower-case.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
double beta_cdf(double x, double a, double b)
Cumulative distribution function of the beta distribution Upper tail of the integral of the beta_pdf.
double beta_cdf_c(double x, double a, double b)
Complement of the cumulative distribution function of the beta distribution.
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
double beta_quantile_c(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the beta distribution (beta_...
double beta_quantile(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the beta distribution (beta_...
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Beta_interval_length(Double_t level, Double_t alpha, Double_t beta)
Double_t operator()(double lower) const