Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ROOT::Math::Minimizer Class Referenceabstract

Abstract Minimizer class, defining the interface for the various minimizer (like Minuit2, Minuit, GSL, etc..) in ROOT.

Plug-in's exist in ROOT to be able to instantiate the derived classes without linking the library using the static function ROOT::Math::Factory::CreateMinimizer.

Here is the list of all possible minimizers and their respective methods (algorithms) that can be instantiated: The name shown below can be used to create them. More documentation can be found in the respective class

The Minimizer class provides the interface to perform the minimization including

In addition to provide the API for function minimization (via ROOT::Math::Minimizer::Minimize) the Minimizer class provides:

  • the interface for setting the function to be minimized. The objective function passed to the Minimizer must implement the multi-dimensional generic interface ROOT::Math::IBaseFunctionMultiDim. If the function provides gradient calculation (e.g. implementing the ROOT::Math::IGradientFunctionMultiDim interface) the gradient will be used by the Minimizer class, when needed. There are convenient classes for the users to wrap their own functions in this required interface for minimization. These are the ROOT::Math::Functor class and the ROOT::Math::GradFunctor class for wrapping functions providing both evaluation and gradient. Some methods, like Fumili, Fumili2 and GSLMultiFit are specialized method for least-square and also likelihood minimizations. They require then that the given function implements in addition the ROOT::Math::FitMethodFunction interface.
  • The interface for setting the initial values for the function variables (which are the parameters in of the model function in case of solving for fitting) and specifying their limits.
  • The interface to set and retrieve basic minimization parameters. These parameter are controlled by the class ROOT::Math::MinimizerOptions. When no parameters are specified the default ones are used. Specific Minimizer options can also be passed via the MinimizerOptions class. For the list of the available option parameter one must look at the documentation of the corresponding derived class.
  • The interface to retrieve the result of minimization ( minimum X values, function value, gradient, error on the minimum, etc...)
  • The interface to perform a Scan, Hesse or a Contour plot (for the minimizers that support this, i.e. Minuit and Minuit2)

An example on how to use this interface is the tutorial NumericalMinimization.C in the tutorials/fit directory.

Definition at line 119 of file Minimizer.h.

Public Member Functions

 Minimizer ()
 Default constructor.
 
 Minimizer (Minimizer &&)=delete
 
 Minimizer (Minimizer const &)=delete
 
virtual ~Minimizer ()
 Destructor (no operations).
 
virtual void Clear ()
 reset for consecutive minimization - implement if needed
 
virtual bool Contour (unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj)
 find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum The contour will be find for value of the function = Min + ErrorUp();
 
virtual double Correlation (unsigned int i, unsigned int j) const
 return correlation coefficient between variable i and j.
 
virtual double CovMatrix (unsigned int ivar, unsigned int jvar) const
 return covariance matrices element for variables ivar,jvar if the variable is fixed the return value is zero The ordering of the variables is the same as in the parameter and errors vectors
 
virtual int CovMatrixStatus () const
 return status of covariance matrix using Minuit convention {0 not calculated 1 approximated 2 made pos def , 3 accurate} Minimizer who implements covariance matrix calculation will re-implement the method
 
virtual double Edm () const
 return expected distance reached from the minimum (re-implement if minimizer provides it
 
double ErrorDef () const
 return the statistical scale used for calculate the error is typically 1 for Chi2 and 0.5 for likelihood minimization
 
virtual const doubleErrors () const
 return errors at the minimum
 
virtual bool FixVariable (unsigned int ivar)
 fix an existing variable
 
virtual bool GetCovMatrix (double *covMat) const
 Fill the passed array with the covariance matrix elements if the variable is fixed or const the value is zero.
 
virtual bool GetHessianMatrix (double *hMat) const
 Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second derivatives and is the inverse of the covariance matrix If the variable is fixed or const the values for that variables are zero.
 
virtual bool GetMinosError (unsigned int ivar, double &errLow, double &errUp, int option=0)
 minos error for variable i, return false if Minos failed or not supported and the lower and upper errors are returned in errLow and errUp An extra flag specifies if only the lower (option=-1) or the upper (option=+1) error calculation is run
 
virtual bool GetVariableSettings (unsigned int ivar, ROOT::Fit::ParameterSettings &pars) const
 get variable settings in a variable object (like ROOT::Fit::ParamsSettings)
 
virtual double GlobalCC (unsigned int ivar) const
 return global correlation coefficient for variable i This is a number between zero and one which gives the correlation between the i-th parameter and that linear combination of all other parameters which is most strongly correlated with i.
 
virtual bool Hesse ()
 perform a full calculation of the Hessian matrix for error calculation
 
virtual bool IsFixedVariable (unsigned int ivar) const
 query if an existing variable is fixed (i.e.
 
bool IsValidError () const
 return true if Minimizer has performed a detailed error validation (e.g. run Hesse for Minuit)
 
unsigned int MaxFunctionCalls () const
 max number of function calls
 
unsigned int MaxIterations () const
 max iterations
 
virtual const doubleMinGradient () const
 return pointer to gradient values at the minimum
 
virtual bool Minimize ()=0
 method to perform the minimization
 
virtual int MinosStatus () const
 status code of Minos (to be re-implemented by the minimizers supporting Minos)
 
virtual double MinValue () const =0
 return minimum function value
 
virtual unsigned int NCalls () const
 number of function calls to reach the minimum
 
virtual unsigned int NDim () const =0
 this is <= Function().NDim() which is the total number of variables (free+ constrained ones)
 
virtual unsigned int NFree () const
 number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total (re-implement if minimizer supports bounded parameters)
 
virtual unsigned int NIterations () const
 number of iterations to reach the minimum
 
Minimizeroperator= (Minimizer &&)=delete
 
Minimizeroperator= (Minimizer const &)=delete
 
virtual MinimizerOptions Options () const
 retrieve the minimizer options (implement derived class if needed)
 
double Precision () const
 precision of minimizer in the evaluation of the objective function ( a value <=0 corresponds to the let the minimizer choose its default one)
 
int PrintLevel () const
 minimizer configuration parameters
 
virtual void PrintResults ()
 return reference to the objective function virtual const ROOT::Math::IGenFunction & Function() const = 0;
 
virtual bool ProvidesError () const
 minimizer provides error and error matrix
 
virtual bool ReleaseVariable (unsigned int ivar)
 release an existing variable
 
virtual bool Scan (unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0)
 scan function minimum for variable i.
 
virtual bool SetCovariance (std::span< const double > cov, unsigned int nrow)
 set initial covariance matrix
 
virtual bool SetCovarianceDiag (std::span< const double > d2, unsigned int n)
 set initial second derivatives
 
void SetDefaultOptions ()
 reset the default options (defined in MinimizerOptions)
 
void SetErrorDef (double up)
 set scale for calculating the errors
 
void SetExtraOptions (const IOptions &extraOptions)
 set only the extra options
 
virtual bool SetFixedVariable (unsigned int ivar, const std::string &name, double val)
 set a new fixed variable (override if minimizer supports them )
 
virtual void SetFunction (const ROOT::Math::IMultiGenFunction &func)=0
 set the function to minimize
 
virtual void SetHessianFunction (std::function< bool(std::span< const double >, double *)>)
 set the function implementing Hessian computation (re-implemented by Minimizer using it)
 
virtual bool SetLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double lower, double upper)
 set a new upper/lower limited variable (override if minimizer supports them ) otherwise as default set an unlimited variable
 
virtual bool SetLowerLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double lower)
 set a new lower limit variable (override if minimizer supports them )
 
void SetMaxFunctionCalls (unsigned int maxfcn)
 set maximum of function calls
 
void SetMaxIterations (unsigned int maxiter)
 set maximum iterations (one iteration can have many function calls)
 
void SetOptions (const MinimizerOptions &opt)
 set all options in one go
 
void SetPrecision (double prec)
 set in the minimizer the objective function evaluation precision ( a value <=0 means the minimizer will choose its optimal value automatically, i.e.
 
void SetPrintLevel (int level)
 set print level
 
void SetStrategy (int strategyLevel)
 set the strategy
 
void SetTolerance (double tol)
 set the tolerance
 
virtual bool SetUpperLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double upper)
 set a new upper limit variable (override if minimizer supports them )
 
void SetValidError (bool on)
 flag to check if minimizer needs to perform accurate error analysis (e.g. run Hesse for Minuit)
 
virtual bool SetVariable (unsigned int ivar, const std::string &name, double val, double step)=0
 set a new free variable
 
virtual bool SetVariableInitialRange (unsigned int, double, double)
 set the initial range of an existing variable
 
virtual bool SetVariableLimits (unsigned int ivar, double lower, double upper)
 set the limits of an already existing variable
 
virtual bool SetVariableLowerLimit (unsigned int ivar, double lower)
 set the lower-limit of an already existing variable
 
template<class VariableIterator >
int SetVariables (const VariableIterator &begin, const VariableIterator &end)
 add variables . Return number of variables successfully added
 
virtual bool SetVariableStepSize (unsigned int ivar, double value)
 set the step size of an already existing variable
 
virtual bool SetVariableUpperLimit (unsigned int ivar, double upper)
 set the upper-limit of an already existing variable
 
virtual bool SetVariableValue (unsigned int ivar, double value)
 set the value of an already existing variable
 
virtual bool SetVariableValues (const double *x)
 set the values of all existing variables (array must be dimensioned to the size of the existing parameters)
 
int Status () const
 status code of minimizer
 
int Strategy () const
 strategy
 
double Tolerance () const
 absolute tolerance
 
virtual int VariableIndex (const std::string &name) const
 get index of variable given a variable given a name return -1 if variable is not found
 
virtual std::string VariableName (unsigned int ivar) const
 get name of variables (override if minimizer support storing of variable names) return an empty string if variable is not found
 
virtual const doubleX () const =0
 return pointer to X values at the minimum
 

Protected Attributes

MinimizerOptions fOptions
 minimizer options
 
int fStatus = -1
 status of minimizer
 
bool fValidError = false
 flag to control if errors have been validated (Hesse has been run in case of Minuit)
 

#include <Math/Minimizer.h>

Inheritance diagram for ROOT::Math::Minimizer:
[legend]

Constructor & Destructor Documentation

◆ Minimizer() [1/3]

ROOT::Math::Minimizer::Minimizer ( )
inline

Default constructor.

Definition at line 124 of file Minimizer.h.

◆ ~Minimizer()

virtual ROOT::Math::Minimizer::~Minimizer ( )
inlinevirtual

Destructor (no operations).

Definition at line 127 of file Minimizer.h.

◆ Minimizer() [2/3]

ROOT::Math::Minimizer::Minimizer ( Minimizer const &  )
delete

◆ Minimizer() [3/3]

ROOT::Math::Minimizer::Minimizer ( Minimizer &&  )
delete

Member Function Documentation

◆ Clear()

virtual void ROOT::Math::Minimizer::Clear ( )
inlinevirtual

reset for consecutive minimization - implement if needed

Reimplemented in ROOT::Math::GeneticMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 136 of file Minimizer.h.

◆ Contour()

bool ROOT::Math::Minimizer::Contour ( unsigned int  ivar,
unsigned int  jvar,
unsigned int npoints,
double xi,
double xj 
)
virtual

find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum The contour will be find for value of the function = Min + ErrorUp();

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 211 of file Minimizer.cxx.

◆ Correlation()

virtual double ROOT::Math::Minimizer::Correlation ( unsigned int  i,
unsigned int  j 
) const
inlinevirtual

return correlation coefficient between variable i and j.

If the variable is fixed or const the return value is zero

Reimplemented in ROOT::Minuit2::Minuit2Minimizer.

Definition at line 264 of file Minimizer.h.

◆ CovMatrix()

double ROOT::Math::Minimizer::CovMatrix ( unsigned int  ivar,
unsigned int  jvar 
) const
virtual

return covariance matrices element for variables ivar,jvar if the variable is fixed the return value is zero The ordering of the variables is the same as in the parameter and errors vectors

Reimplemented in TFumiliMinimizer, ROOT::Math::GeneticMinimizer, TLinearMinimizer, TMinuitMinimizer, ROOT::Minuit2::Minuit2Minimizer, ROOT::Math::RMinimizer, ROOT::Math::GSLMinimizer, and ROOT::Math::GSLNLSMinimizer.

Definition at line 120 of file Minimizer.cxx.

◆ CovMatrixStatus()

virtual int ROOT::Math::Minimizer::CovMatrixStatus ( ) const
inlinevirtual

return status of covariance matrix using Minuit convention {0 not calculated 1 approximated 2 made pos def , 3 accurate} Minimizer who implements covariance matrix calculation will re-implement the method

Reimplemented in TFumiliMinimizer, ROOT::Math::GSLNLSMinimizer, TLinearMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 256 of file Minimizer.h.

◆ Edm()

virtual double ROOT::Math::Minimizer::Edm ( ) const
inlinevirtual

return expected distance reached from the minimum (re-implement if minimizer provides it

Reimplemented in TFumiliMinimizer, ROOT::Math::GeneticMinimizer, ROOT::Math::GSLMinimizer, ROOT::Math::GSLNLSMinimizer, TLinearMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 222 of file Minimizer.h.

◆ ErrorDef()

double ROOT::Math::Minimizer::ErrorDef ( ) const
inline

return the statistical scale used for calculate the error is typically 1 for Chi2 and 0.5 for likelihood minimization

Definition at line 317 of file Minimizer.h.

◆ Errors()

virtual const double * ROOT::Math::Minimizer::Errors ( ) const
inlinevirtual

◆ FixVariable()

bool ROOT::Math::Minimizer::FixVariable ( unsigned int  ivar)
virtual

fix an existing variable

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 87 of file Minimizer.cxx.

◆ GetCovMatrix()

bool ROOT::Math::Minimizer::GetCovMatrix ( double covMat) const
virtual

Fill the passed array with the covariance matrix elements if the variable is fixed or const the value is zero.

The array will be filled as cov[i *ndim + j] The ordering of the variables is the same as in errors and parameter value. This is different from the direct interface of Minuit2 or TMinuit where the values were obtained only to variable parameters

Reimplemented in TMinuitMinimizer, ROOT::Minuit2::Minuit2Minimizer, and ROOT::Math::RMinimizer.

Definition at line 135 of file Minimizer.cxx.

◆ GetHessianMatrix()

bool ROOT::Math::Minimizer::GetHessianMatrix ( double hMat) const
virtual

Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second derivatives and is the inverse of the covariance matrix If the variable is fixed or const the values for that variables are zero.

The array will be filled as h[i *ndim + j]

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 148 of file Minimizer.cxx.

◆ GetMinosError()

bool ROOT::Math::Minimizer::GetMinosError ( unsigned int  ivar,
double errLow,
double errUp,
int  option = 0 
)
virtual

minos error for variable i, return false if Minos failed or not supported and the lower and upper errors are returned in errLow and errUp An extra flag specifies if only the lower (option=-1) or the upper (option=+1) error calculation is run

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 172 of file Minimizer.cxx.

◆ GetVariableSettings()

bool ROOT::Math::Minimizer::GetVariableSettings ( unsigned int  ivar,
ROOT::Fit::ParameterSettings pars 
) const
virtual

get variable settings in a variable object (like ROOT::Fit::ParamsSettings)

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 109 of file Minimizer.cxx.

◆ GlobalCC()

double ROOT::Math::Minimizer::GlobalCC ( unsigned int  ivar) const
virtual

return global correlation coefficient for variable i This is a number between zero and one which gives the correlation between the i-th parameter and that linear combination of all other parameters which is most strongly correlated with i.

Minimizer must overload method if implemented

Reimplemented in ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 161 of file Minimizer.cxx.

◆ Hesse()

bool ROOT::Math::Minimizer::Hesse ( )
virtual

perform a full calculation of the Hessian matrix for error calculation

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 185 of file Minimizer.cxx.

◆ IsFixedVariable()

bool ROOT::Math::Minimizer::IsFixedVariable ( unsigned int  ivar) const
virtual

query if an existing variable is fixed (i.e.

considered constant in the minimization) note that by default all variables are not fixed

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 102 of file Minimizer.cxx.

◆ IsValidError()

bool ROOT::Math::Minimizer::IsValidError ( ) const
inline

return true if Minimizer has performed a detailed error validation (e.g. run Hesse for Minuit)

Definition at line 320 of file Minimizer.h.

◆ MaxFunctionCalls()

unsigned int ROOT::Math::Minimizer::MaxFunctionCalls ( ) const
inline

max number of function calls

Definition at line 294 of file Minimizer.h.

◆ MaxIterations()

unsigned int ROOT::Math::Minimizer::MaxIterations ( ) const
inline

max iterations

Definition at line 297 of file Minimizer.h.

◆ MinGradient()

virtual const double * ROOT::Math::Minimizer::MinGradient ( ) const
inlinevirtual

return pointer to gradient values at the minimum

Reimplemented in TFumiliMinimizer, ROOT::Math::GeneticMinimizer, ROOT::Math::GSLMinimizer, ROOT::Math::GSLNLSMinimizer, TLinearMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 225 of file Minimizer.h.

◆ Minimize()

◆ MinosStatus()

virtual int ROOT::Math::Minimizer::MinosStatus ( ) const
inlinevirtual

status code of Minos (to be re-implemented by the minimizers supporting Minos)

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 313 of file Minimizer.h.

◆ MinValue()

virtual double ROOT::Math::Minimizer::MinValue ( ) const
pure virtual

◆ NCalls()

virtual unsigned int ROOT::Math::Minimizer::NCalls ( ) const
inlinevirtual

◆ NDim()

virtual unsigned int ROOT::Math::Minimizer::NDim ( ) const
pure virtual

this is <= Function().NDim() which is the total number of variables (free+ constrained ones)

Implemented in TFumiliMinimizer, ROOT::Math::GeneticMinimizer, ROOT::Math::BasicMinimizer, TLinearMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

◆ NFree()

virtual unsigned int ROOT::Math::Minimizer::NFree ( ) const
inlinevirtual

number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total (re-implement if minimizer supports bounded parameters)

Reimplemented in TFumiliMinimizer, ROOT::Math::GeneticMinimizer, ROOT::Math::BasicMinimizer, TLinearMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 240 of file Minimizer.h.

◆ NIterations()

virtual unsigned int ROOT::Math::Minimizer::NIterations ( ) const
inlinevirtual

number of iterations to reach the minimum

Definition at line 231 of file Minimizer.h.

◆ operator=() [1/2]

Minimizer & ROOT::Math::Minimizer::operator= ( Minimizer &&  )
delete

◆ operator=() [2/2]

Minimizer & ROOT::Math::Minimizer::operator= ( Minimizer const &  )
delete

◆ Options()

virtual MinimizerOptions ROOT::Math::Minimizer::Options ( ) const
inlinevirtual

retrieve the minimizer options (implement derived class if needed)

Reimplemented in ROOT::Math::GeneticMinimizer.

Definition at line 323 of file Minimizer.h.

◆ Precision()

double ROOT::Math::Minimizer::Precision ( ) const
inline

precision of minimizer in the evaluation of the objective function ( a value <=0 corresponds to the let the minimizer choose its default one)

Definition at line 304 of file Minimizer.h.

◆ PrintLevel()

int ROOT::Math::Minimizer::PrintLevel ( ) const
inline

minimizer configuration parameters

set print level

Definition at line 291 of file Minimizer.h.

◆ PrintResults()

virtual void ROOT::Math::Minimizer::PrintResults ( )
inlinevirtual

return reference to the objective function virtual const ROOT::Math::IGenFunction & Function() const = 0;

print the result according to set level (implemented for TMinuit for maintaining Minuit-style printing)

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 282 of file Minimizer.h.

◆ ProvidesError()

virtual bool ROOT::Math::Minimizer::ProvidesError ( ) const
inlinevirtual

◆ ReleaseVariable()

bool ROOT::Math::Minimizer::ReleaseVariable ( unsigned int  ivar)
virtual

release an existing variable

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 94 of file Minimizer.cxx.

◆ Scan()

bool ROOT::Math::Minimizer::Scan ( unsigned int  ivar,
unsigned int nstep,
double x,
double y,
double  xmin = 0,
double  xmax = 0 
)
virtual

scan function minimum for variable i.

Variable and function must be set before using Scan Return false if an error or if minimizer does not support this functionality

Reimplemented in TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 195 of file Minimizer.cxx.

◆ SetCovariance()

bool ROOT::Math::Minimizer::SetCovariance ( std::span< const double cov,
unsigned int  nrow 
)
virtual

set initial covariance matrix

set initial values for covariance/error matrix The covariance matrix must be provided in compressed form (row-major ordered upper traingular part)

Reimplemented in ROOT::Minuit2::Minuit2Minimizer.

Definition at line 25 of file Minimizer.cxx.

◆ SetCovarianceDiag()

bool ROOT::Math::Minimizer::SetCovarianceDiag ( std::span< const double d2,
unsigned int  n 
)
virtual

set initial second derivatives

Reimplemented in ROOT::Minuit2::Minuit2Minimizer.

Definition at line 15 of file Minimizer.cxx.

◆ SetDefaultOptions()

void ROOT::Math::Minimizer::SetDefaultOptions ( )
inline

reset the default options (defined in MinimizerOptions)

Definition at line 361 of file Minimizer.h.

◆ SetErrorDef()

void ROOT::Math::Minimizer::SetErrorDef ( double  up)
inline

set scale for calculating the errors

Definition at line 347 of file Minimizer.h.

◆ SetExtraOptions()

void ROOT::Math::Minimizer::SetExtraOptions ( const IOptions extraOptions)
inline

set only the extra options

Definition at line 358 of file Minimizer.h.

◆ SetFixedVariable()

bool ROOT::Math::Minimizer::SetFixedVariable ( unsigned int  ivar,
const std::string &  name,
double  val 
)
virtual

set a new fixed variable (override if minimizer supports them )

Reimplemented in ROOT::Math::GeneticMinimizer, TFumiliMinimizer, ROOT::Math::BasicMinimizer, TLinearMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 44 of file Minimizer.cxx.

◆ SetFunction()

virtual void ROOT::Math::Minimizer::SetFunction ( const ROOT::Math::IMultiGenFunction func)
pure virtual

◆ SetHessianFunction()

virtual void ROOT::Math::Minimizer::SetHessianFunction ( std::function< bool(std::span< const double >, double *)>  )
inlinevirtual

set the function implementing Hessian computation (re-implemented by Minimizer using it)

Reimplemented in ROOT::Minuit2::Minuit2Minimizer.

Definition at line 142 of file Minimizer.h.

◆ SetLimitedVariable()

bool ROOT::Math::Minimizer::SetLimitedVariable ( unsigned int  ivar,
const std::string &  name,
double  val,
double  step,
double  lower,
double  upper 
)
virtual

set a new upper/lower limited variable (override if minimizer supports them ) otherwise as default set an unlimited variable

Reimplemented in TFumiliMinimizer, ROOT::Math::BasicMinimizer, TMinuitMinimizer, ROOT::Minuit2::Minuit2Minimizer, and ROOT::Math::GeneticMinimizer.

Definition at line 34 of file Minimizer.cxx.

◆ SetLowerLimitedVariable()

virtual bool ROOT::Math::Minimizer::SetLowerLimitedVariable ( unsigned int  ivar,
const std::string &  name,
double  val,
double  step,
double  lower 
)
inlinevirtual

set a new lower limit variable (override if minimizer supports them )

Reimplemented in ROOT::Math::BasicMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 175 of file Minimizer.h.

◆ SetMaxFunctionCalls()

void ROOT::Math::Minimizer::SetMaxFunctionCalls ( unsigned int  maxfcn)
inline

set maximum of function calls

Definition at line 331 of file Minimizer.h.

◆ SetMaxIterations()

void ROOT::Math::Minimizer::SetMaxIterations ( unsigned int  maxiter)
inline

set maximum iterations (one iteration can have many function calls)

Definition at line 334 of file Minimizer.h.

◆ SetOptions()

void ROOT::Math::Minimizer::SetOptions ( const MinimizerOptions opt)
inline

set all options in one go

Definition at line 353 of file Minimizer.h.

◆ SetPrecision()

void ROOT::Math::Minimizer::SetPrecision ( double  prec)
inline

set in the minimizer the objective function evaluation precision ( a value <=0 means the minimizer will choose its optimal value automatically, i.e.

default case)

Definition at line 341 of file Minimizer.h.

◆ SetPrintLevel()

void ROOT::Math::Minimizer::SetPrintLevel ( int  level)
inline

set print level

Definition at line 328 of file Minimizer.h.

◆ SetStrategy()

void ROOT::Math::Minimizer::SetStrategy ( int  strategyLevel)
inline

set the strategy

Definition at line 344 of file Minimizer.h.

◆ SetTolerance()

void ROOT::Math::Minimizer::SetTolerance ( double  tol)
inline

set the tolerance

Definition at line 337 of file Minimizer.h.

◆ SetUpperLimitedVariable()

virtual bool ROOT::Math::Minimizer::SetUpperLimitedVariable ( unsigned int  ivar,
const std::string &  name,
double  val,
double  step,
double  upper 
)
inlinevirtual

set a new upper limit variable (override if minimizer supports them )

Reimplemented in ROOT::Math::BasicMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 179 of file Minimizer.h.

◆ SetValidError()

void ROOT::Math::Minimizer::SetValidError ( bool  on)
inline

flag to check if minimizer needs to perform accurate error analysis (e.g. run Hesse for Minuit)

Definition at line 350 of file Minimizer.h.

◆ SetVariable()

virtual bool ROOT::Math::Minimizer::SetVariable ( unsigned int  ivar,
const std::string &  name,
double  val,
double  step 
)
pure virtual

◆ SetVariableInitialRange()

virtual bool ROOT::Math::Minimizer::SetVariableInitialRange ( unsigned int  ,
double  ,
double   
)
inlinevirtual

set the initial range of an existing variable

Definition at line 208 of file Minimizer.h.

◆ SetVariableLimits()

virtual bool ROOT::Math::Minimizer::SetVariableLimits ( unsigned int  ivar,
double  lower,
double  upper 
)
inlinevirtual

set the limits of an already existing variable

Reimplemented in ROOT::Math::BasicMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 199 of file Minimizer.h.

◆ SetVariableLowerLimit()

bool ROOT::Math::Minimizer::SetVariableLowerLimit ( unsigned int  ivar,
double  lower 
)
virtual

set the lower-limit of an already existing variable

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 70 of file Minimizer.cxx.

◆ SetVariables()

template<class VariableIterator >
int ROOT::Math::Minimizer::SetVariables ( const VariableIterator &  begin,
const VariableIterator &  end 
)
inline

add variables . Return number of variables successfully added

Definition at line 146 of file Minimizer.h.

◆ SetVariableStepSize()

bool ROOT::Math::Minimizer::SetVariableStepSize ( unsigned int  ivar,
double  value 
)
virtual

set the step size of an already existing variable

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 62 of file Minimizer.cxx.

◆ SetVariableUpperLimit()

bool ROOT::Math::Minimizer::SetVariableUpperLimit ( unsigned int  ivar,
double  upper 
)
virtual

set the upper-limit of an already existing variable

Reimplemented in ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 78 of file Minimizer.cxx.

◆ SetVariableValue()

bool ROOT::Math::Minimizer::SetVariableValue ( unsigned int  ivar,
double  value 
)
virtual

set the value of an already existing variable

Reimplemented in TFumiliMinimizer, ROOT::Math::BasicMinimizer, ROOT::Minuit2::Minuit2Minimizer, and TMinuitMinimizer.

Definition at line 53 of file Minimizer.cxx.

◆ SetVariableValues()

virtual bool ROOT::Math::Minimizer::SetVariableValues ( const double x)
inlinevirtual

set the values of all existing variables (array must be dimensioned to the size of the existing parameters)

Reimplemented in ROOT::Minuit2::Minuit2Minimizer, and ROOT::Math::BasicMinimizer.

Definition at line 187 of file Minimizer.h.

◆ Status()

int ROOT::Math::Minimizer::Status ( ) const
inline

status code of minimizer

Definition at line 310 of file Minimizer.h.

◆ Strategy()

int ROOT::Math::Minimizer::Strategy ( ) const
inline

strategy

Definition at line 307 of file Minimizer.h.

◆ Tolerance()

double ROOT::Math::Minimizer::Tolerance ( ) const
inline

absolute tolerance

Definition at line 300 of file Minimizer.h.

◆ VariableIndex()

int ROOT::Math::Minimizer::VariableIndex ( const std::string &  name) const
virtual

get index of variable given a variable given a name return -1 if variable is not found

Reimplemented in ROOT::Math::BasicMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 232 of file Minimizer.cxx.

◆ VariableName()

std::string ROOT::Math::Minimizer::VariableName ( unsigned int  ivar) const
virtual

get name of variables (override if minimizer support storing of variable names) return an empty string if variable is not found

Reimplemented in ROOT::Math::BasicMinimizer, TMinuitMinimizer, and ROOT::Minuit2::Minuit2Minimizer.

Definition at line 224 of file Minimizer.cxx.

◆ X()

virtual const double * ROOT::Math::Minimizer::X ( ) const
pure virtual

Member Data Documentation

◆ fOptions

MinimizerOptions ROOT::Math::Minimizer::fOptions
protected

minimizer options

Definition at line 370 of file Minimizer.h.

◆ fStatus

int ROOT::Math::Minimizer::fStatus = -1
protected

status of minimizer

Definition at line 371 of file Minimizer.h.

◆ fValidError

bool ROOT::Math::Minimizer::fValidError = false
protected

flag to control if errors have been validated (Hesse has been run in case of Minuit)

Definition at line 369 of file Minimizer.h.

Libraries for ROOT::Math::Minimizer:

The documentation for this class was generated from the following files: