Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
fitNormSum.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Tutorial for normalized sum of two functions Here: a background exponential and a crystalball function Parameters can be set:

  1. with the TF1 object before adding the function (for 3) and 4))
  2. with the TF1NormSum object (first two are the coefficients, then the non constant parameters)
  3. with the TF1 object after adding the function

Sum can be constructed by:

  1. by a string containing the names of the functions and/or the coefficient in front
  2. by a string containg formulas like expo, gaus...
  3. by the list of functions and coefficients (which are 1 by default)
  4. by a std::vector for functions and coefficients
Real time 0:00:00, CP time 0.270
****************************************
Minimizer is Minuit2 / Migrad
Chi2 = 1018.73
NDf = 993
Edm = 9.65559e-06
NCalls = 233
NSignal = 50082 +/- 1231.21
NBackground = 998899 +/- 1569.86
Mean = 2.99896 +/- 0.0022426
Sigma = 0.297871 +/- 0.00230279
Alpha = 2.12493 +/- 0.1368
N = 1.1562 +/- 0.468136
Slope = -0.300341 +/- 0.000644187
Real time 0:00:00, CP time 0.270
Time to generate 1050000 events:
Time to fit using ROOT TF1Normsum:
import ROOT
nsig = 50000
nbkg = 1000000
nEvents = nsig + nbkg
nBins = 1000
signal_mean = 3.0
f_cb = ROOT.TF1("MyCrystalBall", "crystalball", -5.0, 5.0)
f_exp = ROOT.TF1("MyExponential", "expo", -5.0, 5.0)
# I.:
f_exp.SetParameters(1.0, -0.3)
f_cb.SetParameters(1, signal_mean, 0.3, 2, 1.5)
# CONSTRUCTION OF THE TF1NORMSUM OBJECT ........................................
# 1) :
fnorm_exp_cb = ROOT.TF1NormSum(f_cb, f_exp, nsig, nbkg)
# 4) :
f_sum = ROOT.TF1("fsum", fnorm_exp_cb, -5.0, 5.0, fnorm_exp_cb.GetNpar())
# III.:
parameter_values = fnorm_exp_cb.GetParameters()
f_sum.SetParameters(parameter_values.data())
# Note: in the C++ tutorial, the parameter value sync is done in one line with:
# ```C++
# f_sum->SetParameters(fnorm_exp_cb->GetParameters().data());
# ```
# However, TF1NormSum::GetParameters() returns an std::vector by value, which
# doesn't survive long enough in Python. That's why we have to explicitly
# assign it to a variable first and can't use a temporary.
f_sum.SetParName(1, "NBackground")
f_sum.SetParName(0, "NSignal")
for i in range(2, f_sum.GetNpar()):
f_sum.SetParName(i, fnorm_exp_cb.GetParName(i))
# GENERATE HISTOGRAM TO FIT ..............................................................
w = ROOT.TStopwatch()
w.Start()
h_sum = ROOT.TH1D("h_ExpCB", "Exponential Bkg + CrystalBall function", nBins, -5.0, 5.0)
h_sum.FillRandom(f_sum, nEvents)
print("Time to generate {0} events: ".format(nEvents))
w.Print()
# need to scale histogram with width since we are fitting a density
h_sum.Sumw2()
h_sum.Scale(1.0, "width")
# fit - use Minuit2 if available
c1 = ROOT.TCanvas("Fit", "Fit", 800, 1000)
# do a least-square fit of the spectrum
result = h_sum.Fit(f_sum, "SQ")
result.Print()
h_sum.Draw()
print("Time to fit using ROOT TF1Normsum: ")
w.Print()
# test if parameters are fine
for i, pref in enumerate([nsig, nbkg, signal_mean]):
if not ROOT.TMath.AreEqualAbs(pref, f_sum.GetParameter(i), f_sum.GetParError(i) * 10.0):
ROOT.Error(
"testFitNormSum",
"Difference found in fitted {0} - difference is {1:.2f} sigma".format(
f_sum.GetParName(i), (f_sum.GetParameter(i) - pref) / f_sum.GetParError(i)
),
)
ROOT.gStyle.SetOptStat(0)
# add parameters
t1 = ROOT.TLatex(-2.5, 300000, "NSignal = {0:g} #pm {1:g}".format(f_sum.GetParameter(0), f_sum.GetParError(0)))
t2 = ROOT.TLatex(-2.5, 270000, "Nbackgr = {0:g} #pm {1:g}".format(f_sum.GetParameter(1), f_sum.GetParError(1)))
t1.Draw()
t2.Draw()
c1.SaveAs("fitNormSum.png")
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
static void SetDefaultMinimizer(const char *type, const char *algo=nullptr)
Set the default Minimizer type and corresponding algorithms.
Author
Jonas Rembser, Lorenzo Moneta (C++ version)

Definition in file fitNormSum.py.