Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches

Detailed Description

View in nbviewer Open in SWAN
This tutorial illustrates the Fast Fourier Transforms interface in ROOT.

FFT transform types provided in ROOT:

  • "C2CFORWARD" - a complex input/output discrete Fourier transform (DFT) in one or more dimensions, -1 in the exponent
  • "C2CBACKWARD"- a complex input/output discrete Fourier transform (DFT) in one or more dimensions, +1 in the exponent
  • "R2C" - a real-input/complex-output discrete Fourier transform (DFT) in one or more dimensions,
  • "C2R" - inverse transforms to "R2C", taking complex input (storing the non-redundant half of a logically Hermitian array) to real output
  • "R2HC" - a real-input DFT with output in "halfcomplex" format, i.e. real and imaginary parts for a transform of size n stored as r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1
  • "HC2R" - computes the reverse of FFTW_R2HC, above
  • "DHT" - computes a discrete Hartley transform

Sine/cosine transforms:

  • DCT-I (REDFT00 in FFTW3 notation)
  • DCT-II (REDFT10 in FFTW3 notation)
  • DCT-III(REDFT01 in FFTW3 notation)
  • DCT-IV (REDFT11 in FFTW3 notation)
  • DST-I (RODFT00 in FFTW3 notation)
  • DST-II (RODFT10 in FFTW3 notation)
  • DST-III(RODFT01 in FFTW3 notation)
  • DST-IV (RODFT11 in FFTW3 notation)

First part of the tutorial shows how to transform the histograms Second part shows how to transform the data arrays directly

1st transform: DC component: 26.000000
1st transform: Nyquist harmonic: -0.932840
2nd transform: DC component: 29.000000
2nd transform: Nyquist harmonic: -0.000000
#include "TH1D.h"
#include "TVirtualFFT.h"
#include "TF1.h"
#include "TCanvas.h"
#include "TMath.h"
void FFT()
{
// Histograms
// =========
//prepare the canvas for drawing
TCanvas *myc = new TCanvas("myc", "Fast Fourier Transform", 800, 600);
myc->SetFillColor(45);
TPad *c1_1 = new TPad("c1_1", "c1_1",0.01,0.67,0.49,0.99);
TPad *c1_2 = new TPad("c1_2", "c1_2",0.51,0.67,0.99,0.99);
TPad *c1_3 = new TPad("c1_3", "c1_3",0.01,0.34,0.49,0.65);
TPad *c1_4 = new TPad("c1_4", "c1_4",0.51,0.34,0.99,0.65);
TPad *c1_5 = new TPad("c1_5", "c1_5",0.01,0.01,0.49,0.32);
TPad *c1_6 = new TPad("c1_6", "c1_6",0.51,0.01,0.99,0.32);
c1_1->Draw();
c1_2->Draw();
c1_3->Draw();
c1_4->Draw();
c1_5->Draw();
c1_6->Draw();
c1_1->SetFillColor(30);
c1_1->SetFrameFillColor(42);
c1_2->SetFillColor(30);
c1_2->SetFrameFillColor(42);
c1_3->SetFillColor(30);
c1_3->SetFrameFillColor(42);
c1_4->SetFillColor(30);
c1_4->SetFrameFillColor(42);
c1_5->SetFillColor(30);
c1_5->SetFrameFillColor(42);
c1_6->SetFillColor(30);
c1_6->SetFrameFillColor(42);
c1_1->cd();
//A function to sample
TF1 *fsin = new TF1("fsin", "sin(x)+sin(2*x)+sin(0.5*x)+1", 0, 4*TMath::Pi());
fsin->Draw();
Int_t n=25;
TH1D *hsin = new TH1D("hsin", "hsin", n+1, 0, 4*TMath::Pi());
//Fill the histogram with function values
for (Int_t i=0; i<=n; i++){
x = (Double_t(i)/n)*(4*TMath::Pi());
hsin->SetBinContent(i+1, fsin->Eval(x));
}
hsin->Draw("same");
fsin->GetXaxis()->SetLabelSize(0.05);
fsin->GetYaxis()->SetLabelSize(0.05);
c1_2->cd();
//Compute the transform and look at the magnitude of the output
TH1 *hm =nullptr;
hm = hsin->FFT(hm, "MAG");
hm->SetTitle("Magnitude of the 1st transform");
hm->Draw();
//NOTE: for "real" frequencies you have to divide the x-axes range with the range of your function
//(in this case 4*Pi); y-axes has to be rescaled by a factor of 1/SQRT(n) to be right: this is not done automatically!
hm->GetXaxis()->SetLabelSize(0.05);
hm->GetYaxis()->SetLabelSize(0.05);
c1_3->cd();
//Look at the phase of the output
TH1 *hp = nullptr;
hp = hsin->FFT(hp, "PH");
hp->SetTitle("Phase of the 1st transform");
hp->Draw();
hp->GetXaxis()->SetLabelSize(0.05);
hp->GetYaxis()->SetLabelSize(0.05);
//Look at the DC component and the Nyquist harmonic:
Double_t re, im;
//That's the way to get the current transform object:
c1_4->cd();
//Use the following method to get just one point of the output
fft->GetPointComplex(0, re, im);
printf("1st transform: DC component: %f\n", re);
fft->GetPointComplex(n/2+1, re, im);
printf("1st transform: Nyquist harmonic: %f\n", re);
//Use the following method to get the full output:
Double_t *re_full = new Double_t[n];
Double_t *im_full = new Double_t[n];
fft->GetPointsComplex(re_full,im_full);
//Now let's make a backward transform:
TVirtualFFT *fft_back = TVirtualFFT::FFT(1, &n, "C2R M K");
fft_back->SetPointsComplex(re_full,im_full);
fft_back->Transform();
TH1 *hb = nullptr;
//Let's look at the output
hb = TH1::TransformHisto(fft_back,hb,"Re");
hb->SetTitle("The backward transform result");
hb->Draw();
//NOTE: here you get at the x-axes number of bins and not real values
//(in this case 25 bins has to be rescaled to a range between 0 and 4*Pi;
//also here the y-axes has to be rescaled (factor 1/bins)
hb->GetXaxis()->SetLabelSize(0.05);
hb->GetYaxis()->SetLabelSize(0.05);
delete fft_back;
fft_back=nullptr;
// Data array - same transform
// ===========================
//Allocate an array big enough to hold the transform output
//Transform output in 1d contains, for a transform of size N,
//N/2+1 complex numbers, i.e. 2*(N/2+1) real numbers
//our transform is of size n+1, because the histogram has n+1 bins
Double_t *in = new Double_t[2*((n+1)/2+1)];
Double_t re_2,im_2;
for (Int_t i=0; i<=n; i++){
x = (Double_t(i)/n)*(4*TMath::Pi());
in[i] = fsin->Eval(x);
}
//Make our own TVirtualFFT object (using option "K")
//Third parameter (option) consists of 3 parts:
//- transform type:
// real input/complex output in our case
//- transform flag:
// the amount of time spent in planning
// the transform (see TVirtualFFT class description)
//- to create a new TVirtualFFT object (option "K") or use the global (default)
Int_t n_size = n+1;
TVirtualFFT *fft_own = TVirtualFFT::FFT(1, &n_size, "R2C ES K");
if (!fft_own) return;
fft_own->SetPoints(in);
fft_own->Transform();
//Copy all the output points:
fft_own->GetPoints(in);
//Draw the real part of the output
c1_5->cd();
TH1 *hr = nullptr;
hr = TH1::TransformHisto(fft_own, hr, "RE");
hr->SetTitle("Real part of the 3rd (array) transform");
hr->Draw();
hr->GetXaxis()->SetLabelSize(0.05);
hr->GetYaxis()->SetLabelSize(0.05);
c1_6->cd();
TH1 *him = nullptr;
him = TH1::TransformHisto(fft_own, him, "IM");
him->SetTitle("Im. part of the 3rd (array) transform");
him->Draw();
him->GetXaxis()->SetLabelSize(0.05);
him->GetYaxis()->SetLabelSize(0.05);
myc->cd();
//Now let's make another transform of the same size
//The same transform object can be used, as the size and the type of the transform
//haven't changed
TF1 *fcos = new TF1("fcos", "cos(x)+cos(0.5*x)+cos(2*x)+1", 0, 4*TMath::Pi());
for (Int_t i=0; i<=n; i++){
x = (Double_t(i)/n)*(4*TMath::Pi());
in[i] = fcos->Eval(x);
}
fft_own->SetPoints(in);
fft_own->Transform();
fft_own->GetPointComplex(0, re_2, im_2);
printf("2nd transform: DC component: %f\n", re_2);
fft_own->GetPointComplex(n/2+1, re_2, im_2);
printf("2nd transform: Nyquist harmonic: %f\n", re_2);
delete fft_own;
delete [] in;
delete [] re_full;
delete [] im_full;
}
int Int_t
Definition RtypesCore.h:45
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
double Double_t
Definition RtypesCore.h:59
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
Definition TAttAxis.cxx:203
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition TAttFill.h:38
void SetFrameFillColor(Color_t color=1)
Definition TAttPad.h:73
The Canvas class.
Definition TCanvas.h:23
TVirtualPad * cd(Int_t subpadnumber=0) override
Set current canvas & pad.
Definition TCanvas.cxx:719
1-Dim function class
Definition TF1.h:233
TAxis * GetYaxis() const
Get y axis of the function.
Definition TF1.cxx:2411
void Draw(Option_t *option="") override
Draw this function with its current attributes.
Definition TF1.cxx:1333
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1439
TAxis * GetXaxis() const
Get x axis of the function.
Definition TF1.cxx:2400
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:682
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
void SetTitle(const char *title) override
Change/set the title.
Definition TH1.cxx:6734
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition TH1.cxx:9339
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1281
TAxis * GetXaxis()
Definition TH1.h:336
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition TH1.cxx:3273
TAxis * GetYaxis()
Definition TH1.h:337
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3055
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9242
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:9010
The most important graphics class in the ROOT system.
Definition TPad.h:28
TVirtualPad * cd(Int_t subpadnumber=0) override
Set Current pad.
Definition TPad.cxx:693
void Draw(Option_t *option="") override
Draw Pad in Current pad (re-parent pad if necessary).
Definition TPad.cxx:1364
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition TVirtualFFT.h:88
static void SetTransform(TVirtualFFT *fft)
static: set the current transfrom to parameter
virtual void GetPoints(Double_t *data, Bool_t fromInput=kFALSE) const =0
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
static TVirtualFFT * GetCurrentTransform()
static: return current fgFFT
virtual void SetPoints(const Double_t *data)=0
virtual void SetPointsComplex(const Double_t *re, const Double_t *im)=0
virtual void Transform()=0
virtual void GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput=kFALSE) const =0
virtual void GetPointsComplex(Double_t *re, Double_t *im, Bool_t fromInput=kFALSE) const =0
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
constexpr Double_t Pi()
Definition TMath.h:37
Authors
Anna Kreshuk, Jens Hoffmann

Definition in file FFT.C.