Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches

Detailed Description

View in nbviewer Open in SWAN
This tutorial illustrates the special contour options.

  • "AITOFF" : Draw a contour via an AITOFF projection
  • "MERCATOR" : Draw a contour via an Mercator projection
  • "SINUSOIDAL" : Draw a contour via an Sinusoidal projection
  • "PARABOLIC" : Draw a contour via an Parabolic projection
  • "MOLLWEIDE" : Draw a contour via an Mollweide projection
{
TCanvas *c1 = new TCanvas("c1", "earth_projections", 700, 1000);
c1->Divide(2, 3);
TH2F *ha = new TH2F("ha", "Aitoff", 180, -180, 180, 179, -89.5, 89.5);
TH2F *hm = new TH2F("hm", "Mercator", 180, -180, 180, 161, -80.5, 80.5);
TH2F *hs = new TH2F("hs", "Sinusoidal", 180, -180, 180, 181, -90.5, 90.5);
TH2F *hp = new TH2F("hp", "Parabolic", 180, -180, 180, 181, -90.5, 90.5);
TH2F *hw = new TH2F("hw", "Mollweide", 180, -180, 180, 181, -90.5, 90.5);
TString dat = gROOT->GetTutorialDir();
dat.Append("/visualisation/graphics/earth.dat");
dat.ReplaceAll("/./", "/");
ifstream in;
in.open(dat.Data());
while (1) {
in >> x >> y;
if (!in.good())
break;
ha->Fill(x, y, 1);
hm->Fill(x, y, 1);
hs->Fill(x, y, 1);
hp->Fill(x, y, 1);
hw->Fill(x, y, 1);
}
in.close();
c1->cd(1);
ha->Draw("aitoff");
c1->cd(2);
hm->Draw("mercator");
c1->cd(3);
hs->Draw("sinusoidal");
c1->cd(4);
hp->Draw("parabolic");
c1->cd(5);
hw->Draw("mollweide");
return c1;
}
float Float_t
Definition RtypesCore.h:57
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gROOT
Definition TROOT.h:406
R__EXTERN TStyle * gStyle
Definition TStyle.h:436
The Canvas class.
Definition TCanvas.h:23
2-D histogram with a float per channel (see TH1 documentation)
Definition TH2.h:303
Basic string class.
Definition TString.h:139
void SetOptTitle(Int_t tit=1)
Definition TStyle.h:334
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition TStyle.cxx:1640
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
Author
Olivier Couet (from an original macro sent by Ernst-Jan Buis)

Definition in file earth.C.